import _plotly_utils.basevalidators class Mesh3DValidator(_plotly_utils.basevalidators.CompoundValidator): def __init__(self, plotly_name="mesh3d", parent_name="", **kwargs): super(Mesh3DValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, data_class_str=kwargs.pop("data_class_str", "Mesh3d"), data_docs=kwargs.pop( "data_docs", """ alphahull Determines how the mesh surface triangles are derived from the set of vertices (points) represented by the `x`, `y` and `z` arrays, if the `i`, `j`, `k` arrays are not supplied. For general use of `mesh3d` it is preferred that `i`, `j`, `k` are supplied. If "-1", Delaunay triangulation is used, which is mainly suitable if the mesh is a single, more or less layer surface that is perpendicular to `delaunayaxis`. In case the `delaunayaxis` intersects the mesh surface at more than one point it will result triangles that are very long in the dimension of `delaunayaxis`. If ">0", the alpha-shape algorithm is used. In this case, the positive `alphahull` value signals the use of the alpha-shape algorithm, _and_ its value acts as the parameter for the mesh fitting. If 0, the convex-hull algorithm is used. It is suitable for convex bodies or if the intention is to enclose the `x`, `y` and `z` point set into a convex hull. autocolorscale Determines whether the colorscale is a default palette (`autocolorscale: true`) or the palette determined by `colorscale`. In case `colorscale` is unspecified or `autocolorscale` is true, the default palette will be chosen according to whether numbers in the `color` array are all positive, all negative or mixed. cauto Determines whether or not the color domain is computed with respect to the input data (here `intensity`) or the bounds set in `cmin` and `cmax` Defaults to `false` when `cmin` and `cmax` are set by the user. cmax Sets the upper bound of the color domain. Value should have the same units as `intensity` and if set, `cmin` must be set as well. cmid Sets the mid-point of the color domain by scaling `cmin` and/or `cmax` to be equidistant to this point. Value should have the same units as `intensity`. Has no effect when `cauto` is `false`. cmin Sets the lower bound of the color domain. Value should have the same units as `intensity` and if set, `cmax` must be set as well. color Sets the color of the whole mesh coloraxis Sets a reference to a shared color axis. References to these shared color axes are "coloraxis", "coloraxis2", "coloraxis3", etc. Settings for these shared color axes are set in the layout, under `layout.coloraxis`, `layout.coloraxis2`, etc. Note that multiple color scales can be linked to the same color axis. colorbar :class:`plotly.graph_objects.mesh3d.ColorBar` instance or dict with compatible properties colorscale Sets the colorscale. The colorscale must be an array containing arrays mapping a normalized value to an rgb, rgba, hex, hsl, hsv, or named color string. At minimum, a mapping for the lowest (0) and highest (1) values are required. For example, `[[0, 'rgb(0,0,255)'], [1, 'rgb(255,0,0)']]`. To control the bounds of the colorscale in color space, use`cmin` and `cmax`. Alternatively, `colorscale` may be a palette name string of the following list: Grey s,YlGnBu,Greens,YlOrRd,Bluered,RdBu,Reds,Blues, Picnic,Rainbow,Portland,Jet,Hot,Blackbody,Earth ,Electric,Viridis,Cividis. contour :class:`plotly.graph_objects.mesh3d.Contour` instance or dict with compatible properties customdata Assigns extra data each datum. This may be useful when listening to hover, click and selection events. Note that, "scatter" traces also appends customdata items in the markers DOM elements customdatasrc Sets the source reference on Chart Studio Cloud for customdata . delaunayaxis Sets the Delaunay axis, which is the axis that is perpendicular to the surface of the Delaunay triangulation. It has an effect if `i`, `j`, `k` are not provided and `alphahull` is set to indicate Delaunay triangulation. facecolor Sets the color of each face Overrides "color" and "vertexcolor". facecolorsrc Sets the source reference on Chart Studio Cloud for facecolor . flatshading Determines whether or not normal smoothing is applied to the meshes, creating meshes with an angular, low-poly look via flat reflections. hoverinfo Determines which trace information appear on hover. If `none` or `skip` are set, no information is displayed upon hovering. But, if `none` is set, click and hover events are still fired. hoverinfosrc Sets the source reference on Chart Studio Cloud for hoverinfo . hoverlabel :class:`plotly.graph_objects.mesh3d.Hoverlabel` instance or dict with compatible properties hovertemplate Template string used for rendering the information that appear on hover box. Note that this will override `hoverinfo`. Variables are inserted using %{variable}, for example "y: %{y}" as well as %{xother}, {%_xother}, {%_xother_}, {%xother_}. When showing info for several points, "xother" will be added to those with different x positions from the first point. An underscore before or after "(x|y)other" will add a space on that side, only when this field is shown. Numbers are formatted using d3-format's syntax %{variable:d3-format}, for example "Price: %{y:$.2f}". https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format for details on the formatting syntax. Dates are formatted using d3-time-format's syntax %{variable|d3-time-format}, for example "Day: %{2019-01-01|%A}". https://github.com/d3/d3-time- format#locale_format for details on the date formatting syntax. The variables available in `hovertemplate` are the ones emitted as event data described at this link https://plotly.com/javascript/plotlyjs- events/#event-data. Additionally, every attributes that can be specified per-point (the ones that are `arrayOk: true`) are available. Anything contained in tag `` is displayed in the secondary box, for example "{fullData.name}". To hide the secondary box completely, use an empty tag ``. hovertemplatesrc Sets the source reference on Chart Studio Cloud for hovertemplate . hovertext Same as `text`. hovertextsrc Sets the source reference on Chart Studio Cloud for hovertext . i A vector of vertex indices, i.e. integer values between 0 and the length of the vertex vectors, representing the "first" vertex of a triangle. For example, `{i[m], j[m], k[m]}` together represent face m (triangle m) in the mesh, where `i[m] = n` points to the triplet `{x[n], y[n], z[n]}` in the vertex arrays. Therefore, each element in `i` represents a point in space, which is the first vertex of a triangle. ids Assigns id labels to each datum. These ids for object constancy of data points during animation. Should be an array of strings, not numbers or any other type. idssrc Sets the source reference on Chart Studio Cloud for ids . intensity Sets the intensity values for vertices or cells as defined by `intensitymode`. It can be used for plotting fields on meshes. intensitymode Determines the source of `intensity` values. intensitysrc Sets the source reference on Chart Studio Cloud for intensity . isrc Sets the source reference on Chart Studio Cloud for i . j A vector of vertex indices, i.e. integer values between 0 and the length of the vertex vectors, representing the "second" vertex of a triangle. For example, `{i[m], j[m], k[m]}` together represent face m (triangle m) in the mesh, where `j[m] = n` points to the triplet `{x[n], y[n], z[n]}` in the vertex arrays. Therefore, each element in `j` represents a point in space, which is the second vertex of a triangle. jsrc Sets the source reference on Chart Studio Cloud for j . k A vector of vertex indices, i.e. integer values between 0 and the length of the vertex vectors, representing the "third" vertex of a triangle. For example, `{i[m], j[m], k[m]}` together represent face m (triangle m) in the mesh, where `k[m] = n` points to the triplet `{x[n], y[n], z[n]}` in the vertex arrays. Therefore, each element in `k` represents a point in space, which is the third vertex of a triangle. ksrc Sets the source reference on Chart Studio Cloud for k . legendgroup Sets the legend group for this trace. Traces part of the same legend group hide/show at the same time when toggling legend items. legendgrouptitle :class:`plotly.graph_objects.mesh3d.Legendgroup title` instance or dict with compatible properties legendrank Sets the legend rank for this trace. Items and groups with smaller ranks are presented on top/left side while with `*reversed* `legend.traceorder` they are on bottom/right side. The default legendrank is 1000, so that you can use ranks less than 1000 to place certain items before all unranked items, and ranks greater than 1000 to go after all unranked items. lighting :class:`plotly.graph_objects.mesh3d.Lighting` instance or dict with compatible properties lightposition :class:`plotly.graph_objects.mesh3d.Lightpositi on` instance or dict with compatible properties meta Assigns extra meta information associated with this trace that can be used in various text attributes. Attributes such as trace `name`, graph, axis and colorbar `title.text`, annotation `text` `rangeselector`, `updatemenues` and `sliders` `label` text all support `meta`. To access the trace `meta` values in an attribute in the same trace, simply use `%{meta[i]}` where `i` is the index or key of the `meta` item in question. To access trace `meta` in layout attributes, use `%{data[n[.meta[i]}` where `i` is the index or key of the `meta` and `n` is the trace index. metasrc Sets the source reference on Chart Studio Cloud for meta . name Sets the trace name. The trace name appear as the legend item and on hover. opacity Sets the opacity of the surface. Please note that in the case of using high `opacity` values for example a value greater than or equal to 0.5 on two surfaces (and 0.25 with four surfaces), an overlay of multiple transparent surfaces may not perfectly be sorted in depth by the webgl API. This behavior may be improved in the near future and is subject to change. reversescale Reverses the color mapping if true. If true, `cmin` will correspond to the last color in the array and `cmax` will correspond to the first color. scene Sets a reference between this trace's 3D coordinate system and a 3D scene. If "scene" (the default value), the (x,y,z) coordinates refer to `layout.scene`. If "scene2", the (x,y,z) coordinates refer to `layout.scene2`, and so on. showlegend Determines whether or not an item corresponding to this trace is shown in the legend. showscale Determines whether or not a colorbar is displayed for this trace. stream :class:`plotly.graph_objects.mesh3d.Stream` instance or dict with compatible properties text Sets the text elements associated with the vertices. If trace `hoverinfo` contains a "text" flag and "hovertext" is not set, these elements will be seen in the hover labels. textsrc Sets the source reference on Chart Studio Cloud for text . uid Assign an id to this trace, Use this to provide object constancy between traces during animations and transitions. uirevision Controls persistence of some user-driven changes to the trace: `constraintrange` in `parcoords` traces, as well as some `editable: true` modifications such as `name` and `colorbar.title`. Defaults to `layout.uirevision`. Note that other user- driven trace attribute changes are controlled by `layout` attributes: `trace.visible` is controlled by `layout.legend.uirevision`, `selectedpoints` is controlled by `layout.selectionrevision`, and `colorbar.(x|y)` (accessible with `config: {editable: true}`) is controlled by `layout.editrevision`. Trace changes are tracked by `uid`, which only falls back on trace index if no `uid` is provided. So if your app can add/remove traces before the end of the `data` array, such that the same trace has a different index, you can still preserve user- driven changes if you give each trace a `uid` that stays with it as it moves. vertexcolor Sets the color of each vertex Overrides "color". While Red, green and blue colors are in the range of 0 and 255; in the case of having vertex color data in RGBA format, the alpha color should be normalized to be between 0 and 1. vertexcolorsrc Sets the source reference on Chart Studio Cloud for vertexcolor . visible Determines whether or not this trace is visible. If "legendonly", the trace is not drawn, but can appear as a legend item (provided that the legend itself is visible). x Sets the X coordinates of the vertices. The nth element of vectors `x`, `y` and `z` jointly represent the X, Y and Z coordinates of the nth vertex. xcalendar Sets the calendar system to use with `x` date data. xhoverformat Sets the hover text formatting rulefor `x` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format. And for dates see: https://github.com/d3/d3-time- format#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `xaxis.hoverformat`. xsrc Sets the source reference on Chart Studio Cloud for x . y Sets the Y coordinates of the vertices. The nth element of vectors `x`, `y` and `z` jointly represent the X, Y and Z coordinates of the nth vertex. ycalendar Sets the calendar system to use with `y` date data. yhoverformat Sets the hover text formatting rulefor `y` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format. And for dates see: https://github.com/d3/d3-time- format#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `yaxis.hoverformat`. ysrc Sets the source reference on Chart Studio Cloud for y . z Sets the Z coordinates of the vertices. The nth element of vectors `x`, `y` and `z` jointly represent the X, Y and Z coordinates of the nth vertex. zcalendar Sets the calendar system to use with `z` date data. zhoverformat Sets the hover text formatting rulefor `z` using d3 formatting mini-languages which are very similar to those in Python. For numbers, see: https://github.com/d3/d3-3.x-api- reference/blob/master/Formatting.md#d3_format. And for dates see: https://github.com/d3/d3-time- format#locale_format. We add two items to d3's date formatter: "%h" for half of the year as a decimal number as well as "%{n}f" for fractional seconds with n digits. For example, *2016-10-13 09:15:23.456* with tickformat "%H~%M~%S.%2f" would display *09~15~23.46*By default the values are formatted using `zaxis.hoverformat`. zsrc Sets the source reference on Chart Studio Cloud for z . """, ), **kwargs )