from __future__ import absolute_import from six import string_types import json import decimal import datetime from pathlib import Path from plotly.io._utils import validate_coerce_fig_to_dict, validate_coerce_output_type from _plotly_utils.optional_imports import get_module from _plotly_utils.basevalidators import ImageUriValidator # Orca configuration class # ------------------------ class JsonConfig(object): _valid_engines = ("json", "orjson", "auto") def __init__(self): self._default_engine = "auto" @property def default_engine(self): return self._default_engine @default_engine.setter def default_engine(self, val): if val not in JsonConfig._valid_engines: raise ValueError( "Supported JSON engines include {valid}\n" " Received {val}".format(valid=JsonConfig._valid_engines, val=val) ) if val == "orjson": self.validate_orjson() self._default_engine = val @classmethod def validate_orjson(cls): orjson = get_module("orjson") if orjson is None: raise ValueError("The orjson engine requires the orjson package") config = JsonConfig() def coerce_to_strict(const): """ This is used to ultimately *encode* into strict JSON, see `encode` """ # before python 2.7, 'true', 'false', 'null', were include here. if const in ("Infinity", "-Infinity", "NaN"): return None else: return const def to_json_plotly(plotly_object, pretty=False, engine=None): """ Convert a plotly/Dash object to a JSON string representation Parameters ---------- plotly_object: A plotly/Dash object represented as a dict, graph_object, or Dash component pretty: bool (default False) True if JSON representation should be pretty-printed, False if representation should be as compact as possible. engine: str (default None) The JSON encoding engine to use. One of: - "json" for an engine based on the built-in Python json module - "orjson" for a faster engine that requires the orjson package - "auto" for the "orjson" engine if available, otherwise "json" If not specified, the default engine is set to the current value of plotly.io.json.config.default_engine. Returns ------- str Representation of input object as a JSON string See Also -------- to_json : Convert a plotly Figure to JSON with validation """ orjson = get_module("orjson", should_load=True) # Determine json engine if engine is None: engine = config.default_engine if engine == "auto": if orjson is not None: engine = "orjson" else: engine = "json" elif engine not in ["orjson", "json"]: raise ValueError("Invalid json engine: %s" % engine) modules = { "sage_all": get_module("sage.all", should_load=False), "np": get_module("numpy", should_load=False), "pd": get_module("pandas", should_load=False), "image": get_module("PIL.Image", should_load=False), } # Dump to a JSON string and return # -------------------------------- if engine == "json": opts = {"sort_keys": True} if pretty: opts["indent"] = 2 else: # Remove all whitespace opts["separators"] = (",", ":") from _plotly_utils.utils import PlotlyJSONEncoder return json.dumps(plotly_object, cls=PlotlyJSONEncoder, **opts) elif engine == "orjson": JsonConfig.validate_orjson() opts = orjson.OPT_SORT_KEYS | orjson.OPT_SERIALIZE_NUMPY if pretty: opts |= orjson.OPT_INDENT_2 # Plotly try: plotly_object = plotly_object.to_plotly_json() except AttributeError: pass # Try without cleaning try: return orjson.dumps(plotly_object, option=opts).decode("utf8") except TypeError: pass cleaned = clean_to_json_compatible( plotly_object, numpy_allowed=True, datetime_allowed=True, modules=modules, ) return orjson.dumps(cleaned, option=opts).decode("utf8") def to_json(fig, validate=True, pretty=False, remove_uids=True, engine=None): """ Convert a figure to a JSON string representation Parameters ---------- fig: Figure object or dict representing a figure validate: bool (default True) True if the figure should be validated before being converted to JSON, False otherwise. pretty: bool (default False) True if JSON representation should be pretty-printed, False if representation should be as compact as possible. remove_uids: bool (default True) True if trace UIDs should be omitted from the JSON representation engine: str (default None) The JSON encoding engine to use. One of: - "json" for an engine based on the built-in Python json module - "orjson" for a faster engine that requires the orjson package - "auto" for the "orjson" engine if available, otherwise "json" If not specified, the default engine is set to the current value of plotly.io.json.config.default_engine. Returns ------- str Representation of figure as a JSON string See Also -------- to_json_plotly : Convert an arbitrary plotly graph_object or Dash component to JSON """ # Validate figure # --------------- fig_dict = validate_coerce_fig_to_dict(fig, validate) # Remove trace uid # ---------------- if remove_uids: for trace in fig_dict.get("data", []): trace.pop("uid", None) return to_json_plotly(fig_dict, pretty=pretty, engine=engine) def write_json(fig, file, validate=True, pretty=False, remove_uids=True, engine=None): """ Convert a figure to JSON and write it to a file or writeable object Parameters ---------- fig: Figure object or dict representing a figure file: str or writeable A string representing a local file path or a writeable object (e.g. a pathlib.Path object or an open file descriptor) pretty: bool (default False) True if JSON representation should be pretty-printed, False if representation should be as compact as possible. remove_uids: bool (default True) True if trace UIDs should be omitted from the JSON representation engine: str (default None) The JSON encoding engine to use. One of: - "json" for an engine based on the built-in Python json module - "orjson" for a faster engine that requires the orjson package - "auto" for the "orjson" engine if available, otherwise "json" If not specified, the default engine is set to the current value of plotly.io.json.config.default_engine. Returns ------- None """ # Get JSON string # --------------- # Pass through validate argument and let to_json handle validation logic json_str = to_json( fig, validate=validate, pretty=pretty, remove_uids=remove_uids, engine=engine ) # Try to cast `file` as a pathlib object `path`. # ---------------------------------------------- if isinstance(file, string_types): # Use the standard Path constructor to make a pathlib object. path = Path(file) elif isinstance(file, Path): # `file` is already a Path object. path = file else: # We could not make a Path object out of file. Either `file` is an open file # descriptor with a `write()` method or it's an invalid object. path = None # Open file # --------- if path is None: # We previously failed to make sense of `file` as a pathlib object. # Attempt to write to `file` as an open file descriptor. try: file.write(json_str) return except AttributeError: pass raise ValueError( """ The 'file' argument '{file}' is not a string, pathlib.Path object, or file descriptor. """.format( file=file ) ) else: # We previously succeeded in interpreting `file` as a pathlib object. # Now we can use `write_bytes()`. path.write_text(json_str) def from_json_plotly(value, engine=None): """ Parse JSON string using the specified JSON engine Parameters ---------- value: str or bytes A JSON string or bytes object engine: str (default None) The JSON decoding engine to use. One of: - if "json", parse JSON using built in json module - if "orjson", parse using the faster orjson module, requires the orjson package - if "auto" use orjson module if available, otherwise use the json module If not specified, the default engine is set to the current value of plotly.io.json.config.default_engine. Returns ------- dict See Also -------- from_json_plotly : Parse JSON with plotly conventions into a dict """ orjson = get_module("orjson", should_load=True) # Validate value # -------------- if not isinstance(value, (string_types, bytes)): raise ValueError( """ from_json_plotly requires a string or bytes argument but received value of type {typ} Received value: {value}""".format( typ=type(value), value=value ) ) # Determine json engine if engine is None: engine = config.default_engine if engine == "auto": if orjson is not None: engine = "orjson" else: engine = "json" elif engine not in ["orjson", "json"]: raise ValueError("Invalid json engine: %s" % engine) if engine == "orjson": JsonConfig.validate_orjson() # orjson handles bytes input natively value_dict = orjson.loads(value) else: # decode bytes to str for built-in json module if isinstance(value, bytes): value = value.decode("utf-8") value_dict = json.loads(value) return value_dict def from_json(value, output_type="Figure", skip_invalid=False, engine=None): """ Construct a figure from a JSON string Parameters ---------- value: str or bytes String or bytes object containing the JSON representation of a figure output_type: type or str (default 'Figure') The output figure type or type name. One of: graph_objs.Figure, 'Figure', graph_objs.FigureWidget, 'FigureWidget' skip_invalid: bool (default False) False if invalid figure properties should result in an exception. True if invalid figure properties should be silently ignored. engine: str (default None) The JSON decoding engine to use. One of: - if "json", parse JSON using built in json module - if "orjson", parse using the faster orjson module, requires the orjson package - if "auto" use orjson module if available, otherwise use the json module If not specified, the default engine is set to the current value of plotly.io.json.config.default_engine. Raises ------ ValueError if value is not a string, or if skip_invalid=False and value contains invalid figure properties Returns ------- Figure or FigureWidget """ # Decode JSON # ----------- fig_dict = from_json_plotly(value, engine=engine) # Validate coerce output type # --------------------------- cls = validate_coerce_output_type(output_type) # Create and return figure # ------------------------ fig = cls(fig_dict, skip_invalid=skip_invalid) return fig def read_json(file, output_type="Figure", skip_invalid=False, engine=None): """ Construct a figure from the JSON contents of a local file or readable Python object Parameters ---------- file: str or readable A string containing the path to a local file or a read-able Python object (e.g. a pathlib.Path object or an open file descriptor) output_type: type or str (default 'Figure') The output figure type or type name. One of: graph_objs.Figure, 'Figure', graph_objs.FigureWidget, 'FigureWidget' skip_invalid: bool (default False) False if invalid figure properties should result in an exception. True if invalid figure properties should be silently ignored. engine: str (default None) The JSON decoding engine to use. One of: - if "json", parse JSON using built in json module - if "orjson", parse using the faster orjson module, requires the orjson package - if "auto" use orjson module if available, otherwise use the json module If not specified, the default engine is set to the current value of plotly.io.json.config.default_engine. Returns ------- Figure or FigureWidget """ # Try to cast `file` as a pathlib object `path`. # ------------------------- # ---------------------------------------------- file_is_str = isinstance(file, string_types) if isinstance(file, string_types): # Use the standard Path constructor to make a pathlib object. path = Path(file) elif isinstance(file, Path): # `file` is already a Path object. path = file else: # We could not make a Path object out of file. Either `file` is an open file # descriptor with a `write()` method or it's an invalid object. path = None # Read file contents into JSON string # ----------------------------------- if path is not None: json_str = path.read_text() else: json_str = file.read() # Construct and return figure # --------------------------- return from_json( json_str, skip_invalid=skip_invalid, output_type=output_type, engine=engine ) def clean_to_json_compatible(obj, **kwargs): # Try handling value as a scalar value that we have a conversion for. # Return immediately if we know we've hit a primitive value # Bail out fast for simple scalar types if isinstance(obj, (int, float, string_types)): return obj if isinstance(obj, dict): return {k: clean_to_json_compatible(v, **kwargs) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): if obj: # Must process list recursively even though it may be slow return [clean_to_json_compatible(v, **kwargs) for v in obj] # unpack kwargs numpy_allowed = kwargs.get("numpy_allowed", False) datetime_allowed = kwargs.get("datetime_allowed", False) modules = kwargs.get("modules", {}) sage_all = modules["sage_all"] np = modules["np"] pd = modules["pd"] image = modules["image"] # Sage if sage_all is not None: if obj in sage_all.RR: return float(obj) elif obj in sage_all.ZZ: return int(obj) # numpy if np is not None: if obj is np.ma.core.masked: return float("nan") elif isinstance(obj, np.ndarray): if numpy_allowed and obj.dtype.kind in ("b", "i", "u", "f"): return np.ascontiguousarray(obj) elif obj.dtype.kind == "M": # datetime64 array return np.datetime_as_string(obj).tolist() elif obj.dtype.kind == "U": return obj.tolist() elif obj.dtype.kind == "O": # Treat object array as a lists, continue processing obj = obj.tolist() elif isinstance(obj, np.datetime64): return str(obj) # pandas if pd is not None: if obj is pd.NaT: return None elif isinstance(obj, (pd.Series, pd.DatetimeIndex)): if numpy_allowed and obj.dtype.kind in ("b", "i", "u", "f"): return np.ascontiguousarray(obj.values) elif obj.dtype.kind == "M": if isinstance(obj, pd.Series): dt_values = obj.dt.to_pydatetime().tolist() else: # DatetimeIndex dt_values = obj.to_pydatetime().tolist() if not datetime_allowed: # Note: We don't need to handle dropping timezones here because # numpy's datetime64 doesn't support them and pandas's tz_localize # above drops them. for i in range(len(dt_values)): dt_values[i] = dt_values[i].isoformat() return dt_values # datetime and date try: # Need to drop timezone for scalar datetimes. Don't need to convert # to string since engine can do that obj = obj.to_pydatetime() except (TypeError, AttributeError): pass if not datetime_allowed: try: return obj.isoformat() except (TypeError, AttributeError): pass elif isinstance(obj, datetime.datetime): return obj # Try .tolist() convertible, do not recurse inside try: return obj.tolist() except AttributeError: pass # Do best we can with decimal if isinstance(obj, decimal.Decimal): return float(obj) # PIL if image is not None and isinstance(obj, image.Image): return ImageUriValidator.pil_image_to_uri(obj) # Plotly try: obj = obj.to_plotly_json() except AttributeError: pass # Recurse into lists and dictionaries if isinstance(obj, dict): return {k: clean_to_json_compatible(v, **kwargs) for k, v in obj.items()} elif isinstance(obj, (list, tuple)): if obj: # Must process list recursively even though it may be slow return [clean_to_json_compatible(v, **kwargs) for v in obj] return obj