
A fundamental goal of biology is to understand how 
the instructions to create and maintain an organism 
are encoded in its DNA sequence. From worm to man, 
the genomes of different species house remarkably 
similar numbers of protein-​coding genes1, prompting 
the notion that many aspects of complex organisms 
arise from non-​protein-coding regions. These non-​
coding regions comprise a rich diversity of regulatory 
and functional units, amongst the most numerous of 
which are loci encoding long non-​coding RNAs (lncR-
NAs)2. Next-​generation sequencing has identified tens 
of thousands of lncRNA loci, from single-​celled eukar-
yotes to humans3. The sequences of lncRNAs are under 
purifying evolutionary selection4,5, and a substantial 
fraction yield clear phenotypic effects in both in vitro 
and in vivo loss of function studies6–10. Growing num-
bers of lncRNAs have been linked to human diseases11. 
However, their functionality remains contentious12, and 
the number of experimentally characterized or disease-​
associated lncRNAs lies in the hundreds, or ≤1% of 
identified loci13.

Closing this gulf between mapped and experimen-
tally validated lncRNAs has prompted functional stud-
ies of growing scope. These studies have depended 
on the development of the fundamental resource of 
annotations, which describe the genomic locations, 
sequences and exon structure of lncRNA transcripts. 
As the basis of microarray designs, early lncRNA 
annotations enabled researchers to perform the first 
generation of functional genomics studies, implicat-
ing lncRNAs in processes as diverse as embryonic 
stem cell pluripotency14, reprogramming15, tumour 
suppression16, neuronal differentiation17 and cardiac 
differentiation18. More recently, large-​scale functional 
screens based on the CRISPR–Cas system have been 

applied to hundreds or thousands of lncRNAs in a 
single experiment19.

Several different annotations exist for the human 
genome (Table 1), each with advantages and drawbacks 
that might not be immediately evident. They are based 
on two principal strategies of automated and manual 
annotation. Automated annotation typically employs 
transcriptome assembly approaches that are rapid and 
inexpensive but produce incomplete and inaccurate 
annotations. Manual annotation yields high-​quality cata
logues but at slow rates and requiring substantial long-​
term economic support. Both approaches suffer from a 
variety of deficiencies that are important for end users 
to understand.

Recent technical developments promise to revolu-
tionize annotation methods. Third-​generation sequenc-
ing technologies are capable of reading entire RNA or 
cDNA molecules. Combined with methods to capture 
desired transcripts, third-​generation sequencing prom-
ises to extend and improve existing lncRNA annota-
tions rapidly and cost-​effectively. These advances make 
it feasible to envisage the eventual complete annotation 
of the genome, whereby the entirety of biologically rel-
evant genes, transcripts and exons is catalogued in all 
cell types throughout the human lifespan. A key sub-
sidiary aim will be to define what threshold constitutes 
biological relevance and hence whether expression 
(or other) thresholds should be used for inclusion in 
final annotations20.

This Review has two main objectives. The first is 
to provide an overview of the current state of lncRNA 
annotations: how they are created, how good they are, 
best practice in their use, and the development of quan-
titative standards by which they might be evaluated 
and compared. The second is to discuss how emerging 

Long non-​coding RNAs
(lncRNAs). RNA 
transcripts ≥200 nucleotides 
long that do not encode any 
identifiable peptide product.

Towards a complete map of the human 
long non-​coding RNA transcriptome
Barbara Uszczynska-​Ratajczak   1, Julien Lagarde   2,3, Adam Frankish4, Roderic Guigó2,3 
and Rory Johnson   5,6*

Abstract | Gene maps, or annotations, enable us to navigate the functional landscape of our 
genome. They are a resource upon which virtually all studies depend, from single-​gene to 
genome-​wide scales and from basic molecular biology to medical genetics. Yet present-​day 
annotations suffer from trade-​offs between quality and size, with serious but often unappreciated 
consequences for downstream studies. This is particularly true for long non-​coding RNAs 
(lncRNAs), which are poorly characterized compared to protein-​coding genes. Long-​read 
sequencing technologies promise to improve current annotations, paving the way towards a 
complete annotation of lncRNAs expressed throughout a human lifetime.

1Centre of New Technologies, 
University of Warsaw, 
Warsaw, Poland.
2Centre for Genomic 
Regulation (CRG), The 
Barcelona Institute of Science 
and Technology, Barcelona, 
Catalonia, Spain.
3Universitat Pompeu Fabra 
(UPF), Barcelona, Catalonia, 
Spain.
4European Molecular Biology 
Laboratory, European 
Bioinformatics Institute, 
Wellcome Genome Campus, 
Hinxton, Cambridge, UK.
5Department of Medical 
Oncology, Inselspital, 
University Hospital and 
University of Bern, Bern, 
Switzerland.
6Department of Biomedical 
Research (DBMR), University 
of Bern, Bern, Switzerland.

*e-​mail: rory.johnson@ 
dbmr.unibe.ch

https://doi.org/10.1038/ 
s41576-018-0017-y

  N O N - ​C O D I N G  R N A

REVIEWS

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

NATuRe RevIeWS | GENETICs	  volume 19 | SEPTEMBER 2018 | 535

http://orcid.org/0000-0003-0150-3841
http://orcid.org/0000-0002-0290-7445
http://orcid.org/0000-0003-4607-2782
mailto:rory.johnson@
dbmr.unibe.ch
mailto:rory.johnson@
dbmr.unibe.ch
https://doi.org/10.1038/s41576-018-0017-y
https://doi.org/10.1038/s41576-018-0017-y


technologies will have an impact on these annotations 
and may alter our understanding of what constitutes 
the human lncRNA transcriptome. Although we focus 
mainly on human studies, the following discussions 
are of relevance to other model and non-​model organ-
isms. Of note, the lncRNAs discussed here are almost 
exclusively those of the polyadenylated (polyA+) frac-
tion, owing to the fact that most transcriptomic surveys 
have been performed on conventional, oligo-​dT-primed 
cDNA. The universe of polyA− lncRNAs remains largely 
unexplored and may hold many functional molecules21.

lncRNA annotations: a research foundation
Structure of lncRNA annotations and biotypes. 
Annotations, whether of protein-​coding or lncRNA-​
encoding genes, are hierarchical: they are composed of 
gene loci, each of which is composed of one or more 
partially overlapping transcripts, themselves composed 
of one or more exons (Fig. 1a). In the absence of a clear 
understanding of their sequence–structure–function rela-
tionship, lncRNAs have tended to be classified by their 
genomic organization, in other words, the relationship 

of their encoding locus to the nearest protein-​coding 
gene (Fig. 1b). In the context of genome annotation, this 
can be used as a biotype label. The principal dichotomy 
of genomic organization is genic versus intergenic, or 
lncRNAs that overlap or do not overlap a protein-​coding 
gene, respectively. The latter are also referred to as long 
intergenic non-​coding RNAs (lincRNAs). Genic lncRNAs 
may be subdivided by the precise nature of their overlap 
with the protein-​coding gene, and there is some evidence 
for distinct functions and features between these classes22. 
By numbers, lncRNAs tend to be approximately equally 
divided into genic and intergenic classes.

Why are lncRNAs difficult to annotate?. lncRNA anno-
tations lag considerably behind those of protein-​coding 
genes, for reasons that go beyond their more recent 
discovery. There are at least three factors that make 
lncRNA annotation challenging. First, lncRNAs are rel-
atively lowly expressed, meaning that their transcripts 
will be weakly sampled in any unbiased transcriptomic 
data, including expressed sequence tags (ESTs), RNA 
sequencing (RNA-​seq) and cap analysis of gene expression 

Table 1 | lncRNA annotations

Name (version) Reported size 
(gene loci)

Methodsa Comments Completeness Comprehensivenessb Exhaustivenessc

NONCODE (v5) 96,308 Integration of other 
databases

The most 
comprehensive 
resource

8.9% 67 ,276 2.3

MiTranscriptome (v2) 63,615 Assembly from short 
reads

Mainly cancer samples 4.4% 45,088 4.4

FANTOM CAT (v1) 27 ,919 Assembly , other 
annotations and 
CAGE evidence

Mapped 5′ ends using 
CAGE tags

15.8% 27 ,278 3.3

RefSeq 
(GCF_000001405.37_
GRCh38.p11)

15,791 Manual (based on 
cDNA) and automated 
annotation (based on 
RNA-​seq data)

The oldest annotation 11.0% 14,889 1.9

GENCODE (v27) 15,778 Manual annotation 
based on cDNA , ESTs 
and high-​quality long-​
read data

Used by most consortia 
and integrated with 
Ensembl

13.5% 15,063 1.9

BIGTranscriptome 
(v1)

14,158 Assembly , with CAGE 
and 3 P-​seq evidence

Full-​length transcripts 27.7% 12,632 2.1

GENCODE+ 13,434 Union of GENCODE 
(v20) and CLS lncRNAs 
with anchor-​merged 
CLS transcript models

Extension of 
GENCODE by CLS

24.0% 13,434 3.3

CLS FL 807 lncRNAs from 
GENCODE+ with 
CAGE and poly(A) 
evidence

Full-​length transcripts 71.7% 807 5.5

Protein-​codingd 19,502 GENCODE confident 
protein-​coding 
transcripts

Not tagged mRNA_
end_NF nor mRNA_
start_NF in the original 
GENCODE v27 GTF file

53.8% 18,995 2.9

All numbers correct as of the end of 2017. MiTranscriptome, Functional Annotation of the Mammalian genome (FANTOM) cap analysis of gene expression 
(CAGE)-associated transcriptome (CAT) and BIGTranscriptome long non-​coding RNA (lncRNA) catalogues were lifted over to the Genome Reference Consortium 
Human Build 38 (GRCh38) genome assembly. 3P-​seq, poly(A)-position profiling by sequencing; CLS, capture long-​read sequencing; EST, expressed sequence tag; 
RNA-​seq, RNA sequencing. aAssembly in the Methods column refers to transcriptome assembly using short reads from RNA-​seq. bComprehensiveness is the total 
number of gene loci boundaries defined using buildLoci. To compare gene sets in a consistent way , the assembly patches were excluded, and the gene loci 
boundaries were redefined using buildLoci, which explains discrepancies between gene numbers presented here and those reported in original publications. 
cExhaustiveness is the average number of isoforms per gene locus. Figures for completeness, comprehensiveness and exhaustiveness as presented in Fig. 3 are 
shown here. dA set of protein-​coding transcripts was used as a reference.

Annotation
Catalogue of gene loci 
comprising detailed and 
hierarchical information on 
their genomic coordinates and 
that of their constituent 
transcript isoforms and exons, 
all of which are assigned 
unique and stable identifiers.

Transcriptome assembly
The use of bioinformatic 
algorithms to reconstruct gene 
and transcript models based 
on short sequence reads.

Manual annotation
The creation of gene and 
transcript models by human 
annotators based on RNA and 
protein evidence and according 
to defined protocols.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

www.nature.com/nrg

R e v i e w s

536 | SEPTEMBER 2018 | volume 19	

https://github.com/julienlag/buildLoci


(CAGE) data2,23. Second, our understanding of the 
lncRNA sequence–function relationship is poor (Box 1). 
Thus, in contrast to the information-​rich, readily iden-
tifiable open reading frame (ORF) of protein-​coding 
genes, sequence features or functional elements can-
not presently be used to identify novel lncRNAs. 
Third, lncRNAs tend to be weakly conserved during 
evolution24,25, making it challenging to identify their 
orthologues or paralogues by sequence similarity. 
Consequently, lncRNA annotation relies almost entirely 
on physical transcriptomic evidence.

The importance of accurate annotations. The funda-
mental nature of lncRNA annotations means that uncer-
tainties or inaccuracies can have a profound impact on 
downstream projects. For example, during studies on 
the developing bat wing, researchers used microarrays 
to identify what seemed to be an intergenic lncRNA 
upstream of the gene encoding the developmental fac-
tor Meis2 (ref.26). However, careful analysis revealed 
that the cDNA sequence upon which the annotation 
had been based was most likely an internally primed 
fragment of the Meis2 5′ untranslated region (UTR)26. 
Similarly, an annotated lncRNA whose orthologue was 
knocked out in mouse, Kantr, was identified through 
an analysis of full-​length transcript models from long-​
read sequencing to be a protein-​coding transcript with 
an ORF in a previously unannotated exon9,27. Finally, 

1/2-sbsRNA AF087999, which has been proposed to 
regulate mRNAs in trans through Staufen binding, lies 
within the 3′ UTR of the RBM4 gene. There is little evi-
dence supporting AF087999 as an independent tran-
script, leaving it unresolved whether it is a standalone 
lncRNA or a misannotated UTR fragment28.

Amongst the most frequent use of lncRNA annota-
tions is as a reference for quantifying and identifying 
differentially expressed genes and transcripts in RNA-​
seq experiments. Quantifier programs, such as RSEM29 
or Kallisto30, take annotation files as an input together 
with mapped RNA-​seq reads and attempt to estimate 
abundances of lncRNA transcripts. This is a challenging 
problem, particularly for lowly-​expressed transcripts31. 
Inaccuracies or omissions in lncRNA annotations will 
propagate to transcript abundance estimates. For exam-
ple, an excessively long 3′ exon annotation will lead to 
artificially low expression estimates, given that measures 
such as fragments per kilobase per million mapped (FPKM) 
are scaled to the annotated length of transcripts32.

Accurate estimates of lncRNA transcription start 
sites (TSSs) are of particular importance for studies 
of lncRNA promoters or CRISPR–Cas screens, which 
depend on targeting Cas9 molecules to gene promot-
ers6,19. Such studies should only examine transcripts 
with confident 5′ ends, which may be achieved by using 
independent evidence such as CAGE data to exclude 
unvalidated TSSs27,33–35.

Biomedical applications for lncRNA annotations are 
of growing importance. The recent availability of cancer 
genomes has enabled searches for driver lncRNAs, whose 
mutations are positively selected for during tumorigen-
esis36,37. Predictions are critically dependent on lncRNA 
annotation quality. Similarly, diagnostic screening and 
genome-​wide association studies (GWAS) depend on 
making accurate inferences of the functional impact of 
trait-​associated mutations38. Such mutations are often 
assumed to be regulatory when they fall outside exonic 
regions. Truncated lncRNA annotations could therefore 
lead to the misinterpretation of mutations that actually fall 
inside a lncRNA exon and act through the mature lncRNA 
transcript, for example, by modulating a microRNA 
response element, as in the case of lnc-​LAMC2-1:1 (ref.39). 
Finally, the identification of lncRNA biomarkers, such as 
PCA3 for the detection of prostate tumours40, uses RNA-​
seq quantified against lncRNA annotations. In cases where 
the analysis output is a diagnosis, annotation quality can 
thus have a direct impact on patient outcomes.

Additional examples of the diverse uses for lncRNA 
annotations include evolutionary phylogenies24, analysis 
of splicing regulation and conservation41, identification of 
small ORFs (sORFs)42, lncRNA-​specific gene properties25 
and RNA modifications43. Finally, the success of the nas-
cent field of lncRNA functional domain prediction will 
depend in large part on the availability of comprehensive 
and complete lncRNA annotations (Box 1).

The ecosystem of annotations
Thanks to ongoing efforts over the past two dec-
ades (Box 2), a range of lncRNA annotation resources 
obtained by different methods are presently available. 
Contemporary annotation efforts are principally based 

Biotype
An annotation label referring to 
the genomic classification, 
processing or other 
characteristics of a locus or 
transcript intended to provide 
insights into biological function.

Expressed sequence tags
(ESTs). An early transcriptomic 
method in which short 
fragments of transcribed 
regions, often from 5′ or 3′ 
ends, are identified through 
sequencing of cDNA.

Cap analysis of gene 
expression
(CAGE). A cap-​trapping and 
sequencing method that is 
considered a gold standard for 
mapping RNA 5′ ends.

Transcript models
Abstract descriptions of a 
transcription event, defining 
the genomic location of the 
start point, the end point and 
splice junctions.

TSS

PAS

lncRNA

Introns and splice junctions

Intronic, sense

Transcript boundaries

Transcripts

Gene boundaries

a  Definition of annotation structures

Intergenic

Genome

Bidirectional Exonic, antisense (cis)
Intronic, 
antisense

Protein-codingb  Positional classification

Fig. 1 | Basic concepts of lncRNA annotations. a | The principal structures of a long non-​ 
coding RNA (lncRNA) to be annotated. Annotations are hierarchical: they are composed  
of gene loci, each of which is composed of one or more partially overlapping transcripts, 
themselves composed of one or more exons (blue rectangles). b | Positional classification 
of lncRNAs with respect to the nearest protein-​coding gene. Genic lncRNAs overlap a 
protein-​coding gene locus, whereas intergenic lncRNAs, also known as long intergenic 
non-​coding RNAs (lincRNAs), do not. Transcripts that overlap a protein-​coding gene  
on the opposite strand are identified as antisense. PAS, polyadenylation site;  
TSS, transcription start site.
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either on automated transcriptome assemblies from 
short reads or on manual annotation of existing cDNA 
and EST libraries (Fig. 2). Recent years have seen con-
siderable efforts in consolidating lncRNA collections, 
with attention shifting from quantity to quality and a 
premium placed on 5′ and 3′ completeness. In this sec-
tion, we review presently available annotations, grouped 
by method.

Annotations based on transcriptome assembly using 
short reads. Short-​read RNA-​seq experiments produce 
hundreds of millions of reads, providing a deep sam-
pling of even large mammalian transcriptomes. These 
reads can be used to annotate transcripts from known 
and novel genes, both coding and non-​coding. However, 
the fact that reads are much shorter than typical mRNAs 
and lncRNAs means that they must be bioinformatically 

assembled to infer the structure of the underlying tran-
script (Fig. 2a). Despite drawbacks inherent in this 
approach (discussed below), RNA-​seq has facilitated 
the creation of large lncRNA catalogues.

The MiTranscriptome annotation combines 6,503 
data sets, heavily weighted to 27 cancer types, to automat-
ically annotate 58,648 lncRNA genes using a two-​stage  
assembly strategy44. At the time of its creation, 54% of 
loci were not present in any other available resource.

Several studies are taking steps to improve the com-
pleteness of annotations. The Functional Annotation of 
the Mammalian genome (FANTOM) CAGE-​associated 
transcriptome (CAT) meta-​assembly combines both 
published sources and in-​house short-​read assemblies45. 
What sets this collection apart is its use of CAGE tags, 
which mark transcript TSSs, to identify 5′-complete 
transcript models. The resulting 27,919 gene loci are 
more complete at the 5′ end compared with other anno-
tations, as judged by independent evidence, such as his-
tone 3 lysine 4 trimethylation (H3K4me3) and DNase I 
hypersensitivity sites (DHSs)45. One drawback of CAGE 
is that, similar to other RNA-​dependent methods, its 
signal scales with expression46; hence, lowly-​expressed 
transcripts are more weakly represented.

The BIGTranscriptome catalogue comprises tran-
scripts that are complete at both the 5′ and 3′ ends47. 
It employs a new method, CAFE, which is capable 
of inferring strands of unstranded RNA-​seq reads. 
Consequently, CAFE overcomes strand ambiguity, 
which particularly affects genic transcript models 
generated from unstranded data sets, such as those  
from the Human Body Map (HBM) or the Genotype-​Tissue 
Expression (GTEx) project48. CAGE and poly(A)-position 
profiling by sequencing (3 P-​seq) were used to assess 5′-end 
and 3′-end completeness, respectively45,49. Combining 
169 RNA-​seq data sets, BIGTranscriptome comprises 
1,725 novel full-​length lncRNA loci.

Annotations based on manual curation. Gene annota-
tion remains one of the few high-​throughput scientific 
activities where humans still outperform computers. In 
manual annotation, a team of human annotators system-
atically assembles transcriptomic and genomic evidence 
into gene models according to defined protocols. By 
inspection of high-​quality transcript evidence, princi-
pally from ESTs and cDNA databases, annotators can 
create fairly confident annotations, free from many of 
the artefacts inherent in automated approaches (Fig. 2b).

The most widely used manual annotation is 
GENCODE2,50, which stands out thanks to its exten-
sive experimental validation and integration into the 
Ensembl annotation set2. Whereas the main GENCODE 
protein-​coding gene annotation is created by merging 
the output from two pipelines, one manual and one 
automated, the lncRNA annotation is almost entirely 
manual. Individual transcript models are annotated 
and grouped together on the basis of genomic overlap 
of exons and splice sites into gene loci.

Unsurprisingly, manual annotation is much slower 
than automated approaches. Nevertheless, GENCODE 
annotations, released at 6-month intervals, have grown 
rapidly since 2012 (Box 3; Fig. 3a). Moreover, single-​exon 

Fragments per kilobase per 
million mapped
(FPKM). One of the principal 
units of RNA abundance in the 
context of RNA sequencing 
experiments, defined as the 
number of sequenced 
fragments per kilobase of 
annotation per million mapped 
fragments.

Box 1 | Beyond gene annotation: mapping functions and domains

In tandem with complete gene annotations, an additional objective is to predict and 
label molecular, biological and disease functions of long non-​coding RNAs (lncRNAs). 
This aim is held back by our poor understanding of the sequence–function relationship 
of lncRNAs, in contrast to protein-​coding genes whose functions can usually be 
predicted from primary sequence alone52. Here, we discuss a selection of promising 
methods to predict the functions and functional domains of lncRNAs. It will be 
interesting in the future to see such information integrated with annotation databases, 
LNCipedia and LncRNAWiki being the only resources thus far to do this61,62.

Gene-​level functional annotation
Strategies to predict lncRNA functions have traditionally involved reassigning 
functional labels from protein-​coding mRNAs to lncRNAs based on expression patterns. 
Tissue profiles of lncRNAs and mRNAs are determined from RNA sequencing (RNA-​seq) 
or microarray data and then used to create mixed gene clusters by correlation. 
Significantly enriched functional labels attached to mRNAs in each cluster, such as 
Gene Ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) or disease 
association terms103–105, are assigned to any lncRNAs in the same cluster. This widely 
used approach is often referred to as guilt by association23. However, it assumes that 
expression patterns hold information on molecular functionality. Algorithms of 
growing sophistication, often integrating additional data, are being applied to this 
problem106–108. A lack of gold standard data means that it is difficult to assess the power 
of such techniques, although new databases may help resolve this11,109,110.

The expression of lncRNAs within the cell, or subcellular localization, may hold more 
useful clues for molecular functions. RNA-​seq-based maps of lncRNA levels in 
compartments of the cell, including nucleus, cytoplasm and other organelles, can be 
used to create maps of localization111–114. These data are then used to classify lncRNAs 
by their localization according to defined cut-​offs114. Although this approach does not 
make specific functional predictions, it can provide broad pointers; for example, 
nuclear-​enriched transcripts may regulate transcription, while cytoplasmic transcripts 
are more likely to play post-​transcriptional roles. Localization data may also be used to 
search for domains or motifs that promote lncRNA trafficking to specific cellular 
sites115–117.

Mapping lncRNA functional elements
The prevailing view is that lncRNAs, similar to proteins, are modular and composed of 
separable ‘functional elements’ (refs117–119). Convincing evidence is available for a 
limited number of cases117,118,120–124, but the global annotation of elements would be a 
powerful basis for predicting lncRNA functions.

Elements can be predicted by a variety of methods. Evolutionary conservation of RNA 
structures is a statistically rigorous way of finding putative functional elements88. 
Protein-​binding data are useful in identifying molecular interactors and their binding 
sites, although they have the drawback that sensitivity depends on expression, which is 
usually low for lncRNAs125. Maps of inferred or experimentally identified microRNA sites 
may point to post-​transcriptional regulatory roles, such as for competitive endogenous 
RNAs (ceRNAs)125,126. lncRNAs may interact with genomic DNA through the formation of 
triplex structures that can be predicted bioinformatically127. Other studies have 
attempted to map functional sites through transposable elements98,115,116,128.
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models and transcript models supported by transcrip-
tomic data from long-​read sequencing are now being 
introduced (discussed below).

Newly created transcript models are assessed for 
protein-​coding potential (Box 4) and whether they are 
likely to be functional or pseudogenic. Where there 
is no evidence of coding potential from mass spec-
trometry data, orthologues or paralogues in reference 
databases such as UniProt51, structural or functional 
protein domains identified by Pfam52 or conservation 
data such as PhyloCSF53, a locus is defined as non-​
coding. lncRNAs from the literature are assessed with 
equal stringency. Although much of the annotation 
of lncRNAs was completed during first-​pass manual 
annotation across the whole human genome, targeted 
(re)annotation of missing or truncated lncRNAs is 
now underway.

All new transcripts and genes are assigned stable 
identifiers on their creation. All updates to annotation 
are captured in an increment to the version of the gene 
and transcript identifier (that is, “ENSGXXXXXXX.2”). 
For example, when extension or trimming of a transcript 

is undertaken in light of new data or where new data 
emerges to strongly support changing the biotype 
of a locus (Box 3), updates will be made and a version 
increment applied.

Owing to the quality deriving from its manual anno-
tation, regularly updated versions, long-​term support, 
well-​defined and consistent source data, identifier stabil-
ity and integration into Ensembl50, GENCODE has been 
adopted by most large-​scale genomics projects, includ-
ing the Encyclopedia of DNA Elements (ENCODE)54 
(for which it was originally created), GTEx project48, 
International Cancer Genome Consortium (ICGC)55, 
Blueprint56, Epigenome Roadmap57 and FANTOM45. 
The use of stable Ensembl identifiers simplifies the inte-
gration of data across projects and releases. However, the 
inherent weakness of GENCODE is its relatively small 
size: 15,778 genes in human (version 27) and 11,975 
in mouse (version M15). Of note, the mouse annota-
tion project was commenced later, accounting for the 
difference in size with human.

Another manual gene annotation resource, Reference 
Sequence (RefSeq), was created and is maintained by 
the National Center for Biotechnology Information 
(NCBI) and covers multiple species, including human58. 
Consisting of a mixture of manual and automated anno-
tations, RefSeq is created using a variety of evidence, 
including cDNAs, ESTs and RNA-​seq. Entries carry 
unique and stable identifiers and are associated with 
metadata summarizing their annotation history. Of rel-
evance in this context are non-​coding RNA annotations 
with accessions ‘NR_’ and ‘XR_’, which refer to manu-
ally curated models (NR) and products of an automated 
pipeline based on Illumina data (XR), respectively. Thus, 
the RefSeq annotation process is similar to GENCODE, 
with the exception of usage of RNA-​seq. Along with 
GENCODE, RefSeq is one of the most widely used 
lncRNA annotations59.

Integrative annotations. A number of other lncRNA 
collections are worthy of note. NONCODE has, since 
2005, integrated annotations from a mixture of manual 
literature searches and other annotations3. The latest 
version, NONCODE (version 5), is to our knowledge 
the single largest present collection, describing 96,308 
lncRNA gene loci in human alone (as of November 
2017). It also has data for 15 species other than human 
and mouse.

RNACentral is a large-​scale resource of non-​coding 
RNA sequences, integrating various other databases, 
which lists 116,292 lncRNA sequences at the time of 
writing60. It is based on sequences, rather than annota-
tions, making the total number of lncRNA loci unclear.

Finally, LNCipedia and LncRNAWiki stand out 
in their usefulness for integrating functional data. 
LNCipedia holds a database of 48,028 carefully filtered 
lncRNA genes from a range of sources61. Users may 
access information on peptide mapping, coding poten-
tial, RNA folding and microRNA recognition. Similarly, 
LncRNAWiki holds a variety of useful information, 
including disease association and putative small pep-
tides, and is an invaluable resource of manually curated 
functional information for hundreds of lncRNAs62.

Box 2 | The evolution of lncRNA collections

The first hint at the volume of long non-​coding RNAs (lncRNAs) populating our genome 
came from genomic microarray technology. Starting in 2002, tiled microarrays with 
increasing density and genomic span revealed extensive transcription outside of then-​
known gene loci129. However, the exact sequence and hence protein-​coding potential, 
of those transcripts could not be resolved with this technology. The sequences of these 
unannotated transcripts were first resolved by massive cDNA sequencing undertaken 
by the Functional Annotation of the Mammalian genome (FANTOM) consortium130,131. 
The consortium used a combination of cap analysis of gene expression (CAGE), which 
can identify transcription start sites (TSSs) by sequencing the 3′ end of cDNAs (that is, 
the 5′ end of RNAs), and ditag sequencing (also known as paired-​end tag sequencing), 
which is capable of identifying both TSSs and polyadenylation sites. Approximately 
one-​third of cDNAs did not contain identifiable protein-​coding sequences; in other 
words, they were lncRNAs. This data set facilitated the first studies demonstrating 
purifying evolutionary selection on lncRNAs as a population, implying that at least a 
subset is functional rather than “transcriptional noise”4.

lncRNA genes were also identified indirectly through their patterns of histone 
modifications23. Reasoning that lncRNA genes may carry similar combinations of 
histone 3 lysine 4 trimethylation (H3K4Me3) and histone 3 lysine 36 trimethylation 
(H3K36Me3) modifications — known markers of active protein-​coding genes — 
researchers identified approximately 1,000 long intergenic non-​coding RNAs 
(lincRNAs) in human and mouse23,132. These lincRNA genes exhibited low steady-​state 
expression levels compared with mRNAs, now known to be a general property of 
lncRNAs.

Growing volumes of publicly available cDNA sequences opened the way to accurate 
lncRNA annotations, similar to those for protein-​coding genes. The first catalogue of 
5,446 human lncRNA loci was generated largely on the basis of cDNAs filtered by an 
open reading frame (ORF) prediction tool and a pipeline based on the protein basic 
local alignment search tool (BLASTP)133.

The advent of RNA sequencing (RNA-​seq) democratized lncRNA annotation. Using 
only a sequencer and off-​the-shelf computational tools, any laboratory was able to 
identify thousands of lncRNA loci in their favourite cell type. A central requirement for 
this approach is transcriptome assembly, whereby computational algorithms are used 
to reconstruct the underlying transcript structures responsible for observed RNA-​seq 
reads67 (Fig. 2a). Reference-​based methods that make use of read-​to-genome 
alignments to infer transcript structures tend to be more accurate than de novo 
methods68. Foremost amongst reference-​based assemblers are Cufflinks67 and, more 
recently, StringTie69. In the first attempt to apply RNA-​seq to lncRNA annotation, Cabili 
et al.134 assembled RNA sequences from a variety of human tissues to yield a total of 
4,662 lncRNA loci. This study discovered another fundamental property of lncRNAs: 
high tissue-​specificity and cell type-​specificity.
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How good are lncRNA annotations?
Overlap between annotations. Annotations tend to 
have low overlap (Fig. 3b). For example, the two larg-
est annotations, MiTranscriptome and NONCODE, 
have just 27.7% and 45.5% of genes in common, 
respectively. Not surprisingly, NONCODE encom-
passes more than 97% of GENCODE, which it incor-
porates. What is perhaps unexpected is the poor 
overlap that is observed between the two manual 
annotations, GENCODE and RefSeq (34.6% and 
44%, respectively). Overall, the low overlap points to 
much scope for merging of annotations to improve 
comprehensiveness.

Quality metrics for annotations. An ideal annotation 
would be a record of every locus expressed at any point 
in time from the genome of a given species. An impor-
tant requirement for future lncRNA mapping projects is 
the development of standards for assessing quality that 
go beyond anecdotal examples. For the present discus-
sion, we make the following definitions of annotation 
quality: (a) comprehensiveness — the fraction of all gene 
loci that are included; (b) exhaustiveness — the fraction 
of all transcripts from each locus that are known; (c) 
completeness — the fraction of transcript models that 
cover the entire length, from start to end, of the phys-
ical RNA molecule. Obviously, comprehensiveness 

lncRNAs

a  Automatic annotation b  Manual annotation

Short RNA-seq reads

Align reads to the genome Assemble transcripts de novo

Assemble transcripts from 
spliced alignments

-AAA

-AAA

-AAA

PASCAGE tags

RNA-seq introns

EST

Analysis of coding potential

Estimate coding potential

Transcript models Transcript models Transcript models

Estimate coding potential

Align transcript models to 
the reference genome

• PhyloCSF
• Mass spectrometry
• Ribosome profiling
• Swiss-Prot or UniProt 

cDNA

Genome

Fig. 2 | Annotation strategies for lncRNAs. a | Automatic annotation based on RNA sequencing (RNA-​seq) may 
follow two distinct strategies that differ in how the genome reference is used. The align-​then-assemble strategy (left) 
aligns reads to the reference genome to reveal possible splicing events and then assembles reads into transcript 
models. The assemble-​then-align strategy (right) builds transcript models de novo, directly from the RNA-​seq reads, 
and then aligns them to the reference genome to determine their exon–intron structure. De novo transcriptome 
assembly has more explorative potential than alignment-​based assembly but tends to have worse performance68.  
b | In manual annotation, human annotators employ various sources of data to build transcript models. Expressed 
sequence tags (ESTs) and cDNA form the primary evidence for transcript models and are often supplemented with 
RNA-​seq reads to validate introns, cap analysis of gene expression (CAGE) clusters to identify 5′ ends45 and 
poly(A)-position profiling by sequencing (3P-​seq) to identify polyadenylation sites (PASs)47. A key step in the 
annotation process is to assess the protein-​coding potential of transcripts, usually on the basis of a combination of 
methods. lncRNA , long non-​coding RNA.
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and exhaustiveness are impossible to define, as we do 
not know the total number of lncRNA genes or tran-
scripts. Nevertheless, we can at least compare proxies 
for these metrics between annotations (Table 1) to get 
a comparative picture. By contrast, a minimum bound 
can be placed on completeness, owing to the availa-
bility of independent evidence for transcript 5′ and 3′ 
boundaries.

Based on these three metrics, we have compared 
the discussed lncRNA annotations (Fig. 3c). Most strik-
ing is the general anti-​correlation between compre-
hensiveness and completeness. In other words, there 
is a trade-​off between quality and size: smaller anno-
tations tend to have higher completeness (although 
this remains low in absolute terms) and vice versa. 
Amongst the smaller annotations, BIGTranscriptome 
is the leader in terms of completeness, although with 
low numbers of annotated transcripts per gene. The 
two manual annotations, GENCODE and RefSeq, 
have comparable profiles. For the larger annota-
tions, MiTranscriptome has just 4.4% of complete 
(full-​length) transcript models (Fig. 3c), which is most 
likely the result of its dependence on transcriptome 
assembly. NONCODE beats MiTranscriptome in size 
and completeness but with lower exhaustiveness. 
FANTOM CAT represents a compromise between 
completeness and comprehensiveness. Of note, we find 
substantially lower 5′ completeness than originally 
reported45, which is due to the use of more stringent 
CAGE cut-​off thresholds: only robust CAGE clusters 

(FANTOM5 phase 1/2 robust (n = 201,802)) were 
considered, and FANTOM5 phase 2 unfiltered CAGE 
clusters (n = 4,218,430) were discarded owing to their 
seemingly high background rate.

Data are also displayed for protein-​coding genes 
as a reference, with the assumption that their annota-
tion is of the highest quality. The protein-​coding gene 
annotation should be comprehensive, as not many are 
expected to remain undiscovered63. We also included a 
recently generated set of full-​length lncRNA transcript 
models produced using capture long-​read sequencing 
(CLS) technology (discussed below)27. These mod-
els display high completeness, in part because their 
5′ ends were defined using the same CAGE data as 
used here for evaluation. Incorporation of CLS mod-
els into GENCODE resulted in an improved annota-
tion, GENCODE+ (Table 1), with dramatically higher 
completeness. It is noteworthy that GENCODE+ has a 
slightly reduced gene count as a result of unifying arte-
factually separate gene models in existing annotations.

One important caveat of this analysis is that CAGE 
clusters used for 5′-end definition are expression-​
dependent and only available for a defined set of tis-
sues. This likely accounts, at least in part, for the fact 
that protein-​coding genes have apparent 5′ complete-
ness <100% (Fig. 3d) and will also underestimate com-
pleteness of lower expressed lncRNAs. However, it is 
also possible that some protein-​coding gene annotations 
remain incomplete.

The use of proxies for comprehensiveness (numbers 
of loci) and exhaustiveness (transcripts per gene) makes 
the key assumption that no false-​positive annotations 
exist. This assumption is probably incorrect and will 
affect some annotations more than others. In parti
cular, assembly-​based collections may hold substantial 
numbers of false-​positive transcripts. Inspection of 
splice junctions supports the idea that certain annota-
tions, particularly NONCODE, suffer from high rates 
of false-​positive structures (Fig. 3e).

Overall, this analysis illustrates the strengths and 
weaknesses of contemporary annotations. It highlights 
the great scope for improving lncRNA annotations, 
first, by increasing their completeness to levels observed 
for protein-​coding genes and, second, by improving 
their comprehensiveness by merging diverse available 
resources.

Sources of incompleteness. The lack of completeness in  
existing lncRNA annotations may be traced to several 
historical and technical factors. cDNA molecules often 
tend to be 5′ truncated, owing to a combination of RNA 
degradation and the tendency of reverse transcriptase 
molecules to disengage before reaching the 5′ end of 
the template RNA, often as a result of RNA secondary 
structures64. In short-​read RNA-​seq, a range of processes 
create non-​uniformity in read coverage, particularly at 
the 5′ and 3′ ends65. Together, these factors introduce a 
tendency for short-​read assemblies and cDNA libraries, 
upon which most annotations are based, to be 5′ and 3′ 
incomplete34,35,45,66.

More generally, the assembly of transcriptomes 
from short reads is inherently challenging. Assembly 

Box 3 | Using GENCODE lncRNA annotations

Availability
The GENCODE annotation of long non-​coding RNAs (lncRNAs) is released in alignment 
with versioned Ensembl updates. Mouse releases are prefixed M; the most recent 
human release is GENCODE v27 and for mouse vM15. Full GENCODE annotations are 
available in GTF and GFF3 formats from the Ensembl and University of California Santa 
Cruz genome browsers and from gencodegenes.org. Separate files containing only 
lncRNA transcripts are also available. The GENCODE site also houses a full archive of 
previous releases and their statistics. 

Biotypes
A full description of all GENCODE lncRNA biotypes is presented in the HAVANA 
annotation guidelines135. More recently, biotypes relating to other genomic features 
have been added and are being populated; for example, a ‘bidirectional-​promoter 
lncRNA’ describes a locus where a lncRNA lies on the opposite strand to a 
protein-​coding gene and there is evidence — for example, from cap analysis of gene 
expression (CAGE) data — that their transcription start sites lie within a window 
of 200 bp.

Biotype labels should be employed with caution as they tend to exhibit  
considerable inertia. As they are defined with reference to nearby protein-​coding gene 
structures, any changes in those structures can lead to a change in the biotype. If  
users require up-​to-date biotype information, it is recommended to regenerate them, 
for example, by using the lncrna.annotator script or the classifier module within 
FEELnc136.

GENCODE Comprehensive versus GENCODE Basic
GENCODE Comprehensive comprises the entire annotation of transcript models.  
As lncRNA annotations become increasingly complex, a need arises for a simplified 
annotation: GENCODE Basic. GENCODE Basic contains at least one transcript for every 
gene locus, ensuring full gene representation. For protein-​coding loci, all coding 
transcripts with full-​length coding DNA sequence (that is, ATG to stop codon) are 
included in the Basic set. For complex lncRNA loci, the Basic set is generated by 
including the minimal set of transcripts that capture >80% of the splice sites.
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programs, including the widely used Cufflinks67, have 
high error rates. Whereas exons are identified with 
reasonable sensitivity, their assembly into correct tran-
scripts is particularly difficult68. Simulations across a 
range of assembly programs demonstrate a mean sen-
sitivity of only 41% in assembling expressed genes, 
dropping to 21% at the transcript level68. The major-
ity of such transcript models lacks one or more exons. 
Assemblies are sensitive to gene expression levels and 
coverage uniformity68, which has a particular impact 
on lowly-​expressed lncRNAs. However, even when 
controlling for expression, transcriptome assemblies 
are less sensitive for lncRNAs compared with mRNAs 
for unknown reasons68. More recent assemblers such as 
StringTie and Scallop run far faster than Cufflinks and 
have demonstrably better sensitivity and specificity, but 
resultant assemblies remain far from ideal69,70. In a study 
using StringTie to assemble synthetic spliced RNAs, it 
was found that for the correct assembly of >50% of its 
nucleotides, a transcript must be expressed at a level 
equivalent to 23 FPKMs — far in excess of the average 
lncRNA or even mRNA66. These issues will result in low 
comprehensiveness, exhaustiveness and completeness of 
annotations based on transcriptome assemblies.

Another issue that probably has an impact on com-
prehensiveness is of historical nature: the material used 
for the generation of cDNA libraries has been biased 
towards adult tissues, tumour samples and cell lines2,44. 
Thus, modern annotations may omit much of the wealth 
of lncRNAs likely to be expressed during embryogenesis, 
development and childhood48. Similarly, certain lncR-
NAs may only be expressed in rare subpopulations of 
cells within a tissue or even cell culture71 and thus are 
likely to be missed owing to the low apparent expression 
in bulk cell samples.

In summary, present annotations are likely to fall 
short in all the quality metrics described, leaving thou-
sands of gene loci, transcripts and exonic nucleotides 
unmapped.

Emerging technologies in lncRNA annotation
Advances in key technologies for targeting and sequenc-
ing lncRNA transcripts promise to directly address the 
two principal challenges facing lncRNA annotations of 
low target abundance and incomplete transcript models.

Long-​read sequencing technologies. Pacific Biosciences’  
(PacBio) technology employs zero-​mode waveguides to 
sequence single circularized DNA or cDNA molecules. 
Around 40,000 reads are produced by each lane, with 
an average ~1.5 kb length27,72. This length is several-​fold 
longer than the average exon, meaning that the exon 
connectivity of complete or almost complete transcript 
structures can be resolved. A recent study in human 
showed that, for transcripts up to ~1.5–2.0 kb, the major-
ity of reads yields full-​length transcript structures, fall-
ing short on average 47 nt and 6 nt from the annotated 
5′ and 3′ sites, respectively72.

Raw PacBio sequencing reads tend to have relatively 
high error rates72. To mitigate this issue, consensus reads 
of insert (ROIs) are assembled from multiple passes of 
the same circular template molecule. Resulting per-​base 
sequencing errors are moderate, approximately twofold 
greater than for Illumina and with a tendency for nucle-
otide deletions72. At this rate, the majority of reads can 
be mapped with high confidence73. Despite its advan-
tages, widespread adoption of PacBio is hindered by its 
cost and low throughput. Given the low representation 
of lncRNAs within the cellular transcriptome, pure 
PacBio sequencing would be an inefficient method to 
map lncRNA loci72. Perhaps its greatest drawback is its 
sequencing preference for short templates in a mixture. 
This limitation creates the need to size-​select cDNA 
libraries, introducing a length-​dependent bias in the 
sequenced transcripts27,72.

Nanopore-​based technologies read single molecules 
in real time74; nucleic acid molecules are translocated at 
a controlled rate through a membrane-​bound protein 
nanopore. Changes to electric currents through nano-
pores are used to infer the identity of each nucleotide. 
This technology has reached the mainstream market 
with Oxford Nanopore’s MinION technology74, which 
is capable of returning ~5 million reads per flow cell, at 
a cost of ~€500.

Nanopore has a range of advantages over other 
sequencing approaches. By dispensing with the ampli-
fication or enzymatic modification of target mole-
cules, important sources of bias are avoided. cDNA 
molecules can be directly sequenced with minimal 
preparation75, and it may even be feasible to identify 
chemically modified bases76. A recent report describes 
direct sequencing of RNA (as opposed to cDNA) from 
a variety of samples, with read lengths of up to 7.5 kb 
and sequencing accuracy of 80%77. Reads are free from 
biases regarding template length or GC content, which 
affect other technologies78. Most importantly in the 
present context, nanopore sequencing yields reads of 
lengths that are virtually unlimited and that far exceed 
known lncRNAs and mRNAs78. These beneficial prop-
erties of throughput, read length and cost make nano-
pore technology highly appealing in the context of gene 
annotation.

Fig. 3 | Comparison of leading lncRNA annotations. a | Growth of GENCODE long 
non-​coding RNA (lncRNA) collection over time, in terms of gene loci. Only reference 
releases are included. b | Overlap between annotations at the gene level, based on a 
medium-​stringency definition. Values represent the percentage of gene loci in the 
annotation of each row that overlap the annotation in each column. Overlap is 
defined as at least 60% of the span of the shorter gene on the same strand. Only 
genes with at least one multiexonic transcript were included. See Table 1 for details. 
c | Comparison of quality metrics between annotations. x-​axis: comprehensiveness, 
or the total number of gene loci; y-​axis: completeness, or percentage of transcript 
structures whose start is supported by a robust phase 1/2 Functional Annotation of 
the Mammalian genome (FANTOM) cap analysis of gene expression (CAGE) cluster 
(n = 201,802) within ±50 bases and whose end contains a canonical polyadenylation 
motif154 within a window of 10–50 bp upstream. Circle diameters reflect 
exhaustiveness, or mean number of transcripts per gene. GENCODE+ is the union of 
GENCODE version 20 with non-​anchor-merged capture long-​read sequencing (CLS) 
transcript models. Protein-​coding is a set of confident GENCODE protein-​coding 
transcripts as described in ref.27. d | As for part c, but separately for 5′ and 3′ 
completeness. e | The distribution of predicted splice junction strength for splice site 
acceptors and donors in each lncRNA catalogue, as calculated by the GeneID 
software155. The plots show non-​redundant splice sites from lncRNA annotations sets 
(top), confident GENCODE protein-​coding transcripts (middle), and 500,000 
randomly selected GC|GT donors + AG acceptors with no evidence of splicing in any 
of the annotation sets under study (bottom). For each non-​canonical splice site not 
scored by GeneID, a random score between −30 and −20 was assigned.

◀
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RNA capture sequencing. lncRNAs tend to be 
expressed approximately one order of magnitude lower 
than mRNA and represent about 1–2% of polyA+ RNA 
in a cell27,72,79,80. This creates a considerable hurdle for 
annotation, because lncRNA molecules are simply less 
likely to be sampled at a given depth of sequencing. 
One solution is to boost their apparent concentration 
in a cDNA library using oligonucleotide capture in a 
technique known as RNA CaptureSeq81,82. Custom 
libraries of tiled complementary oligonucleotide 
probes are used to enrich a population of desired 
targets in solution. This approach boosts the rep-
resentation of lncRNA sequences to >25%, improving 
sequencing coverage by tens of fold compared with 
a conventional, uncaptured sample81. To date, this 
approach has been used successfully in human83 and 
mouse84 tissues.

RNA CaptureSeq demonstrates powerfully increased 
sensitivity compared with conventional, unbiased 
sequencing methods, typically discovering novel tran-
scripts and gene loci expressed at far less than one copy 
per cell83. Often, adjacent and erroneously separate 
annotations are merged, or annotated loci are extended 
with new exonic sequence84. However, previous studies 
have largely relied on short-​read Illumina sequencing 
coupled to Cufflinks transcriptome assembly81,83,84. 

Consequently, resulting annotations suffer from the 
same uncertainties and weaknesses as discussed above 
and have low 5′ and 3′ coverage66,68.

The dependence of RNA CaptureSeq on short reads 
has recently been overcome by coupling it to PacBio 
technology in a method termed CLS27,85. By using long 
reads, CLS avoids the issues associated with short reads 
and transcript assembly, enabling the identification of 
full-​length transcript models. By integrating CAGE data 
and fragments of poly(A) tails contained in PacBio reads, 
CLS can assess the completeness of transcript models at 
5′ and 3′ ends, respectively (Fig. 4). The use of template-​
switching reverse transcriptase technology to generate 
almost full-​length cDNAs can boost 5′ completeness fur-
ther64. Short reads sequenced from the same samples can 
be used to assess the accuracy of splice site predictions86. 
As such, CLS marries the enhanced sequencing cover-
age provided by capture to transcript model confidence 
afforded by long reads. In the first report of this method, 
2 million reads each in human and mouse across a panel 
of tissues and cells yielded novel full-​length transcript 
models from 947 previously annotated human lncRNA 
loci27. Although the annotation complexity of the probed 
regions was approximately doubled, there was no sign of 
saturation of splice junctions, indicating that much more 
sequencing depth will be required to establish definitive 
gene structures in detected loci. A similar conclusion was 
reached in a study using essentially the same strategy to 
survey the transcriptional landscape of chromosome 21 
in human testis85.

Although the speed and cost of the CLS approach 
make it a substantial step towards more comprehensive 
lncRNA annotations, it suffers from some weaknesses 
that must first be resolved. The lengths of full-​length 
transcript models are limited by PacBio reads, leaving 
many targeted transcripts incomplete. Also, sequenc-
ing depths are insufficient to saturate targeted loci. The 
incorporation of nanopore sequencing technology in the 
CLS workflow should help to overcome these barriers.

Towards complete lncRNA annotations
With the tools of long-​read sequencing and RNA cap-
ture in hand, we may now envisage an eventual complete 
lncRNA annotation: maps of the entire universe of lncR-
NAs expressed throughout the lifetime of an organism, 
beginning with Homo sapiens.

A roadmap. The most obvious route to complete anno-
tation lies in the systematic application of CLS coupled 
to nanopore sequencing (Fig. 4). Capture library designs 
would have two main components. First, in order to 
complete existing annotations, the entire catalogue of 
known lncRNAs would be targeted27. Second, in order 
to map unknown lncRNAs, suspected loci lying outside 
of annotated exons would be probed. These would come 
from two main sources: first, loci with a high confidence 
for lncRNA production, such as physical evidence from 
RNA-​seq-derived assemblies and introns44,87, and sec-
ond, regions with more speculative evidence, such as 
predicted lncRNA orthologues from other species24, 
bioinformatic predictions88, GWAS regions89 or small 
RNAs with presumed long precursors90.

Oligonucleotide capture
A method for enriching cDNA 
libraries with sequences of 
interest using solution-​phase 
hybridization to tiled, labelled 
oligonucleotide probes.

Box 4 | Are lncRNAs really non-​coding?

The extent to which protein-​coding capacity is a qualitative (binary) or quantitative 
(gradual) property of RNAs has long been debated137. Recently, functional small 
peptides have been identified in transcripts previously annotated as long non-​coding 
(lncRNAs)42,138. More broadly, ribosome profiling139,140 and bioinformatic141 studies have 
claimed that a large proportion of annotated lncRNAs encode proteins.

However, these findings are not yet conclusive. Ribosome interaction itself is 
suggestive, but not direct, evidence of coding potential142,143. For bioinformatic 
identification, a large fraction of purported, novel coding transcripts are likely to be 
false positives, arising from inadequate statistical approaches that do not correctly 
account for technical and biological noise144–146. For example, of the ~350 best-​
supported novel open reading frames (ORFs) proposed by Mackowiak et al.141 and 
manually reviewed by GENCODE, only 35 could be verified (A.F., unpublished 
observation). Together with the presently low number of cases for which peptides have 
directly been observed, this observation means that it may be premature to suppose 
that most lncRNAs are translated into functional peptides.

This is not to say that annotations should not be rigorously screened to flag 
“transcripts of unknown coding potential” (ref.134). A variety of tools exist to predict 
protein-​coding regions in RNA sequences, which may be classified amongst those using 
intrinsic sequence properties (for example, Coding-​Potential Assessment Tool 
(CPAT)147), similarity to known proteins (for example, Coding Potential Calculator 
(CPC)148) and evolutionary signatures of protein evolution (for example, PhyloCSF53). 
The latter tool is considered to have the greatest sensitivity, particularly for short 
peptides136,149 but identifies only evolutionarily conserved peptides and is 
computationally intensive. More direct evidence comes from mass spectrometry, 
although low sensitivity and the short length of potential peptides complicates their 
identification94,150–152, and care must be taken to correctly estimate false-​positive 
predictions153.

Most annotation pipelines integrate one or several of these approaches136. For 
GENCODE, in addition to comparing putative ORFs within lncRNAs to entries in 
reference protein databases, such as UniProt and Pfam, all lncRNAs are routinely tested 
using both PhyloCSF and dedicated proteogenomics filtering. Manual re-​examination 
can lead to reclassification of dubious lncRNAs. However, this is fairly infrequent: a 
stringent proteogenomics workflow to reprocess >52 million spectra revealed more 
than 1,400 putative novel protein-​coding genes, but only 16 were confirmed following 
detailed reanalysis and just 8 fell in annotated lncRNA loci94.
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Capture libraries would be used to probe diverse 
organ and tissue panels across the human lifespan 
from embryos to aged adults, thus going beyond the 
adult organ panels and tumours that tend to domi-
nate present data sets91,92. Given that organs are com-
plex mixtures of common and rare cell types, it will 
also be beneficial to probe purified cell populations93. 

Technology permitting, this may eventually be 
extended to sampling single-​cell transcriptomes of 
rare types that would be missed in bulk preparations71. 
Finally, the majority of transcriptome studies to date 
have been performed on individuals of European 
ancestry, making future sampling across different 
human populations a priority.

Such an ambitious project would entail considerable 
logistical and economic challenges. As recognized by 
ENCODE54, a practical first step would be to focus on 
complete collections of lncRNA in defined cell types or 
organs. These might entail complex organs or cell lines 
of particular scientific or biomedical relevance, such as 
ENCODE cell lines80.

Captured cDNA libraries would be sequenced using 
nanopore technology, up to a rationally chosen depth, 
defined below. The accuracy of the 5′ end, the 3′ end 
and splice junctions would be validated using independ-
ent data sets, in addition to bioinformatic and experi-
mental screening for protein-​coding capacity53,94. With 
this level of quality, resulting transcript models can be 
added to existing annotations with low levels of scrutiny 
by human annotators, minimizing the delay between 
sequencing and public availability.

How do we know when to stop?. A number of con-
siderations must guide decisions regarding resource 
allocation in annotation projects. First, we must take 
care to focus efforts on collecting lncRNAs of biologi-
cal relevance. Unfortunately, we remain far from having 
reliable methods for distinguishing functional lncR-
NAs from transcriptional noise. Although imposing 
a minimum expression threshold is an obvious path, 
the discovery of apparently functional lncRNAs with 
expression of <<1 copy per cell20 would argue against 
imposing a hard expression cut-​off. Nevertheless, 
to maximize usefulness in downstream applications 
such as RNA-​seq, it is sometimes helpful to eliminate 
unnecessary complexity arising from growing numbers 
of transcript isoforms. This has prompted the creation 
of simplified annotations such as GENCODE’s Basic 
annotation (Box 3).

A question of singular importance to the design of 
annotation projects is: is the lncRNA population finite, 
and if so, how many transcripts and loci does it com-
prise? Or conversely, is an effort at complete annotation 
doomed by the fact that the transcriptome is infinite, 
owing to pervasive transcription or unlimited combina-
torial splicing85? Certainly, after a decade of research, we 
are little closer to assigning an upper bound to the first 
question. Recent CLS studies finished sequencing before 
saturating even already known lncRNA loci27, while a 
recent study claims that lncRNA genes explore astro-
nomical numbers of available splicing combinations85. 
Furthermore, present upper estimates of lncRNA num-
bers are biased towards adult cell types, raising the possi-
bility of existence of untold numbers of developmentally 
regulated lncRNAs.

A further source of complexity could be ‘personal’ 
transcriptomes — lncRNAs that are unique to individ-
uals or populations95,96. Such transcripts might arise 
from individual-​specific genomic regions that are not 
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represented in the reference or else shared genomic 
regions that are active in certain individuals thanks 
to processes such as transposon insertion97,98 or trans-​
acting factors99. Even if the size of every individual 
personal transcriptome is small, summed across the 
entire population it could be enormous. Efforts to map 
personal genomes and transcriptomes are underway 
with the ENCODE Tissue Expression (EnTEx) project 
amongst others100. Personal lncRNAs, if they exist, may 
explain individual-​specific phenotypes and features and 
could be of crucial importance to personalized medicine.

However, there is evidence supporting the finiteness 
of the lncRNA transcriptome. Simulations performed 
on relatively shallow CLS sequences from an admittedly 
limited range of tissues exhibited a decreasing rate of dis-
covery with depth27, indicating that lncRNA transcript 
complexity tends towards an asymptote. Deveson et al. 
seem to have exhaustively mapped all exons on chro-
mosome 21 in testis85. Similarly, in analyses of nearly the 
entire volume of public RNA-​seq data, the number of 
splice sites almost reached a plateau87. Finally, a more 
focused study in B cells also found evidence for an upper 
threshold in lncRNA isoform diversity101. Therefore, 
although lncRNA transcripts are highly complex and 
challenging to exhaustively map, a full map of at least 
their exons and splice sites is tractable.

Nevertheless, in any large-​scale annotation project 
involving third-​generation sequencing at depth, it will be 
imperative to periodically monitor the rate of novel tran-
script discovery in each tissue sample as a function of  

sequencing depth. This will indicate when transcriptome 
complexity has been saturated and hence when sequencing 
resources should be reallocated to other samples.

Conclusions and perspective
lncRNA annotations are a fundamental resource for 
basic research and also have growing importance for 
practical applications such as personalized medicine102. 
Although it has been argued, quite reasonably, that 
many lncRNAs may represent non-​functional noise, 
the growing number of clearly documented counter-
examples suggests that at least a substantial fraction 
of transcripts is functional in the strictest sense of 
enhancing organismal fitness.

The rapidly growing volume of the annotated 
lncRNA transcriptome will bring benefits but also new 
challenges, particularly in making this information 
available in a way that maximizes usefulness without 
sacrificing genuine biological complexity.

At present, lncRNA annotations lag far behind those 
for protein-​coding genes, to an extent not often appre-
ciated by individual researchers. However, there is now 
an opportunity to create complete annotations, at least 
in certain well-​defined cell types. This will not only open 
new vistas into the molecular biology of the cell, dis-
ease mechanisms and diagnostics, but also enable us to 
answer fundamental questions about the functionality 
of lncRNAs.
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