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e Background

/ O RNA-seq experimental protocols

O Short-read RNA-seq data processing
O Reference gene annotation

e RNA-seq data analysis
O Sample clustering based on gene expression
O Differential gene expression
O Functional enrichment
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Background



What, How and why RNAseq?

® Set of techniques that employ sequencing to
measure the presence and quantity of RNA
molecules in a biological sample.

® Different applications:

O Characterising transcriptional landscape of
cells and their function.

O Dissect transcriptional complexity (e.g.,
alternative splicing, start and termination sites).

O Annotate novel elements.
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RNA-seq experiment
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RNA-seq experiment

1 PCR with fluorescent,
chain-terminating ddNTPs
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RNA-seq experiment
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Mapping strategy



Mapping and Quantification

/ - S -
Find a correspondence between the query — \’ -
sequences and our prior knowledge. FASTA/FASTQ files
N
I
I .
—= = == =
I — A — reference
gene X

2+1+3=06reads

This will then be used to_quantify the expression of a gene, upon
a simple idea to count the RNA-seq reads that fall within the exons
of this gene.
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Reference gene annotation

e For a given species and associated genome assembly, the
reference gene annotation is the collection of all genes
known for this species.

e Various completion stages (high-quality annotations are
those of human, and main model organisms; e€.g., mouse,
D. melanogaster, C. elegans or yeast).

e The choice of annotation is extremely important as it will
serve as ground truth against which the RNA-seq data will
be compared.
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https://www.gencodegenes.org/

GENCODE annotation

HUMAN MOUSE

GENCODE 46 (May 2024) GENCODE M35 (May 2024)

Human gene count

International consortium which goal is to classify all throughout years
gene features in the human and mouse genomes 70000
with high accuracy based on biological evidence. 60000

50000

40000

e Broad gene categories:

30000

e GFF/GTF file format; several features. 20000

10000

0
mprotein_coding ®IG/TR_segment ©IncRNA mEpseudogene @Esmall_RNA
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https://www.gencodegenes.org/

Mapping and Quantification

RNAseq reads (FASTQ)

1. Mapping [ ]
N

Genome Aligned Transcriptome
Reads (BAM) Aligned Reads (BAM)

N
4

2. Quantification . [ememesn Lo
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BigWig Contigs

Transcript and Gene
quantifications

Emilio Palumbo
grape-nf: An automated RNA-seq pipeline using Nextflow 13



https://github.com/guigolab/grape-nf

Gene expression quantification

e Longer genes will get more reads than small genes

I — - — I —— -
gene X gene Y

2+1+3=06reads Hh+2+5+3=15reads

15>>6 — gene Y>> gene X
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Gene expression quantification

e Longer genes will get more reads than small genes

2+1+3=06reads
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Gene expression quantification

e Higher depth of sequencing means we get higher number of

mapped reads

28>>15

'

gene Y, >>gene Y,

Experiment A _—-—_—_
gene Y
H+2+5+3=15reads

— = . .
Experiment B I — -
gene Y

9+4+10+5 =28 reads
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Gene expression quantification

e Higher depth of sequencing means we get higher number of
/ mapped reads

Experiment A _—-—_—_
gene Y
H+2+5+3=15reads
-- ] | I
—— _— . m S
Experiment B I — -
gene Y

9+4+10+5 =28 reads
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Transcripts expression quantification

/ Gene expression is indeed quite easy to compute, however estimating the
expression of individual transcripts of each gene is a difficult problem:

I-

_‘ aa N 2 _V

Only one of this many reads is unequivocally assignable to an isoform!

Read deconvolution which is at the base of transcript quantification is
possible via several methods, like RSEM, and Kallisto for example.
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Gene expression quantification

e RPKM (or FPKM in case of paired-end experiments®)
/ Read (Fragment) Per Kilobase of exon model per Million mapped reads: is the
standardized read count of a gene in an experiment by

1) the length of the gene and mavped ds % 107
pped reads *

ii) the total number of mapped reads TP KM =

in the experiment #ortazav; 2008).

T'ot mapped reads *x Length

However, it assumes that the absolute amount of total RNA in each cell is similar
across different cell types or experimental conditions, which is not always the case
(Loven, 2072),

e TPM 6 RPKM
TPM = 10
Transcripts per Million Z; 2074/ ) Sum(RPKM)

19
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Transformation methods
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Hands-on |

> Overview
> Environment set-up
> Data preparation

— Hands-on 2024



https://public-docs.crg.es/rguigo/courses/rnaseq/2024/

RNA-seq analysis



Analysis pipeline

[ Differential gene ]

expression

l

Visualization
(heatmap, volcano plots)

Y

Gene Ontology term
enrichment

]
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y (2nd dimension)

A geometrical
insight

Observations in 2 dimensions
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A geometrical
insight
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Genes

A geometrical
insight

samples

Gl

G2

G3

G4

G5
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Genes

A geometrical
insight

Euclidean distance: \J Z(qi — p:)2.
i=1

samples

D D2

G1 0. 0.0
G2 0. 0.25 | sum

0.52
G3 -0. 0.01
G4 0. 0.25 sqrt
G5 0. 0.01 0.72
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Genes

A geometrical

lnSIght Euclidean distance:

samples

Gl 1.0 1.0 6.0 5.0

G2 2.0 1.5 5.0 5.1

G3 1.0 1.1 1.0 1.0

G4

G5

.28

.69
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Clustering methods - Hierarchical

Starting from the distance matrix it repeatedly seeks for the two
closest samples, bringing them together in a cluster.

Hierarchical Clustering Dendrogram

4t p2

pl

p3

Euclidean Distance

rwation from: https://dashee87.github.io

pO pl p2 p3 p4 p5 p6
Sample Index
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The linkage criterion

Single Linkage

.

Clster A
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i
|
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PCA

Principal Component Analysis consists in transforming the original
dataset to decrease its dimensionality while preserving most of the
variance, ultimately helping their interpretability while extracting the

most significant features.

If we rotate the graph such that
the two lines are now the X and Y axes

Focusing on the two best fitted lines

Flattening the datato D = 2

‘0-.“ :0 ..4'0‘?
..l.

» The data points are spread out along the diagonal line
» The data points are spread out along the vertical line
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Hands-on ||

> Clustering and PCA

— Hands-on 2024



https://public-docs.crg.es/rguigo/courses/rnaseq/2024/

RNA-seq analysis
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Differential gene expression (DGE)

Batch Sex Sample | g = g, g,
/ Aim: identify genes that . e A
are more (less) expressed 1
In one condition than in 2 Male A,
the other
3 Male A3
4 Male A4
1 Female B1
2 Female 82
3 Female B3
4 Female B
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> edgeR

> [DESeq?

(R

(R

Many tools, what to chose?

package)

/ Robinson, MeCarthy, ngﬂn, "EdgeR: a bioconductor package for for differential expression of digital gene exprecsion data.” Bivinformatice 26(1) (2010): 139-4o0.

package)

Love, Michael I, Wolfaang Hober, and Simon Anders. ‘Moderated estimation of fold change and dicpersion for RNA-Seq data with DESeq2."Genome bivlogy 15.12

(2014).

> yoom+limma

(R

package)

Law, Charity W., et al. "Yoom: precicion weighte unlsck linear model analysic toole for RNA-ceq read counts.” Genome Biol 15.2 (2014): R21.

More than 90% of the genes

detected in each group were
overlapped across these
methods

——

Characteristic

Data Type

Normalization
Method

Data Size

Statistical Model

Assumptions

edgeR

Count data (e.g., RNA-
Seq)

TMM (Trimmed Mean
of M-values)

Small to medium
datasets

Negative binomial

Over-dispersed
counts, biological
variation

DESeq2

Count data (RNA-Seq)

Median of Ratios

Small to medium
datasets

Negative binomial

Over-dispersed
counts, biological
variation

Count or continuous
data

Voom (variance
modeling)

Small to large datasets

Linear models

Homoscedasticity,
continuous data
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Basics Of DGE We will use edgeR to perform

these steps.

Normalization

- Data (read counts) discrete and positive
e - Negative binomial is the most suitable choice

data per gene

010

2T Negative
o+ binomial

007 4=

o5+

We need to
estimate the mean
and variance of the
fitted distribution

o051

004

oG+

o+

oo+

om
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- The null hypothesis (H ): gene expression
Hypothesis is the same in both conditions
testing - Calculate a p-value

ber gene - Adjust for multiple testing (e.g. FDR)

Theoretical
Null non-null value

Null
Hypothesis

H

o

Alternative
Hypothesis

H

1

Power (1-B)

. Typell Typel o
(8, False Negatives) 'gRer  ermor (a, False Positives)
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MA plots shows the relationship
between red and green channels.

 ——

-log10(P-value)

MA and volcano plots

Volcano plot

| !
-1 0 1 2 3

Fold Change

Volcano plots FC against p-value of
differences between samples.
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Functional Enrichment

Connect the changes in the level of expression to changes in higher-level
biological functions, checking if differentially expressed genes are
enriched for specific functional terms.

Are the functional terms associated to the genes in my set
overrepresented with respect to a background set of genes?

39



Functional Enrichment

Connect the changes in the level of expression to changes in higher-level
biological functions, checking if differentially expressed genes are
enriched for specific functional terms.

Are the functional terms associated to the genes in my set
overrepresented with respect to a background set of genes?

a. Databases of annotated functional terms: a. Statistical test:
m (Gene Ontology m Over-representation analysis
m KEGG pathways (hypergeometric test)
m Reactome m Gene Set Enrichment Analysis
m Human Phenotype Ontology
m WikiPathways

 ——
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Gene Ontology (GO)

computable form.

e Defines classes used to describe
gene function, and relationships
between these.

e 3 Main controlled vocabularies:
m Biological Process (BP)
m Molecular Function (MF)
m Cellular Component (CC)

 ——

Functional Enrichment

cellular
component

/e Allows to capture biological
knowledge in a written and
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Bioinformatics We
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Hands-on Il

> Differential Gene Expression
> Data Visualisation
> Functional enrichment

— Hands-on 2024



https://public-docs.crg.es/rguigo/courses/rnaseq/2024/

