Studying the transcriptome using RNA-seq

Cecilia Coimbra Klein Computational Biology of RNA Processing, CRG Departament de Genètica, IBUB, UB

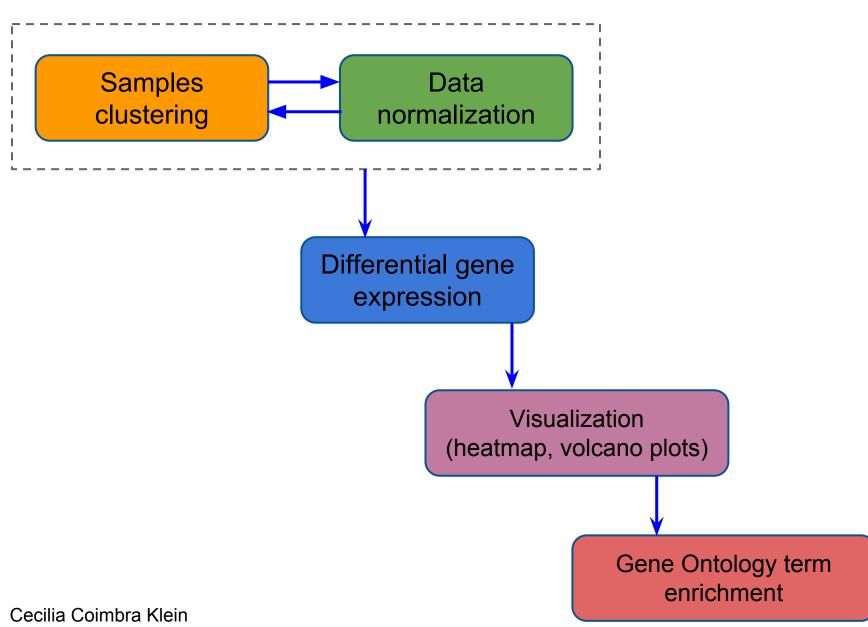
> Master in Omics Data Analysis Jan. 2019

IC UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA

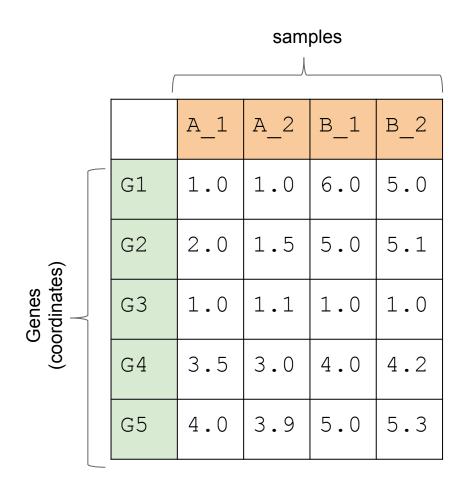
Master in Omics Data Analysis

Outline

Outline


- Basic concepts
- Reference gene annotation
- Next generation sequencing
- RNA-seq experimental protocols
- Short-read RNA-seq data processing
 - mapping
 - visualisation of gene expression signal
 - gene expression quantification
- RNA-seq data analysis
 - sample clustering based on gene expression
 - differential gene expression
 - gene ontology (GO) term enrichment
 - differential splicing analysis

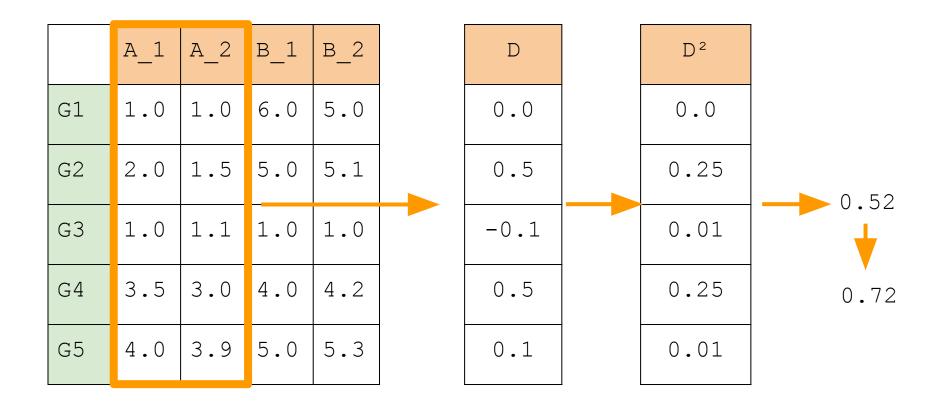
Outline


- ChIP-seq data processing
 - mapping
 - peak calling
 - \circ visualisation of signal
- ChIP-seq data analysis
 - genomic locations
 - differential peaks per tissue
 - BED files in UCSC browser
- Integrative data analysis
 - promoter regions of differentially expressed genes
 - ATAC-seq signal in the UCSC genome browser
 - promoter regions of differentially spliced genes
 - omics portals

RNA-seq data analysis

Analysis pipeline

A practical example: Gene expression matrix



- which samples are more alike and which are more different?
- which genes are more alike and which are more different?
- clustering: grouping genes and/or samples such that similar ones are closer to each other

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

distance matrix

	A_1	A_2	B_1	в_2
A_1				
A_2				
B_1				
в_2				

Euclidean distance:

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

	A_1	A_2	B_1	в_2
A_1	0.0	0.72	5.94	5.27
A_2	0.72	0.0		
B_1	5.94		0.0	
B_2	5.27			0.0

)

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

	A_1	A_2	B_1	в_2
A_1	0.0	0.72	5.94	5.27
A_2	0.72	0.0		
B_1	5.94		0.0	
B_2	5.27			0.0

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

	A_1	A_2	B_1	B_2
A_1	_1 0.0 0.72		5.94	5.27
A_2	0.72	0.0		
B_1	5.94		0.0	
в_2	5.27			0.0

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

	A_1	A_2	B_1	B_2
G1	1.0	1.0	6.0	5.0
G2	2.0	1.5	5.0	5.1
G3	1.0	1.1	1.0	1.0
G4	3.5	3.0	4.0	4.2
G5	4.0	3.9	5.0	5.3

	A_1	A_2	B_1	B_2
A_1	0.0	0.72	5.94	5.27
A_2	0.72	0.0		
B_1	5.94		0.0	
B_2	5.27			0.0

$$d(\mathbf{p}, \mathbf{q}) = d(\mathbf{q}, \mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

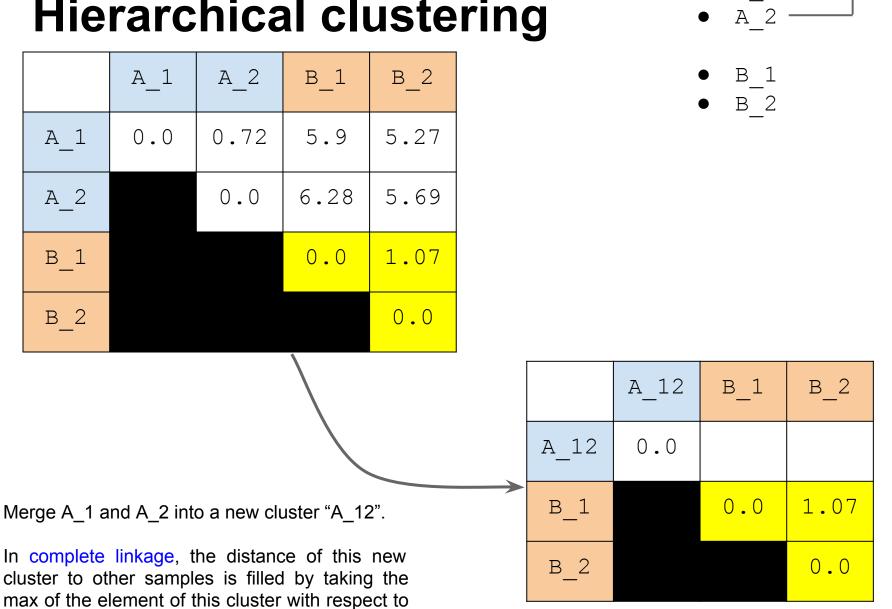
5 x 4

	A 1	A 2	в 1	в 2			4 x 4		
		<u>-</u>	<u> </u>	<u> </u>		A 1	A 2	в 1	в 2
G1	1.0	1.0	6.0	5.0		—	—	—	—
					A 1	0.0	0.72	5.9	5.27
G2	2.0	1.5	5.0	5.1					
G3	1.0	1.1	1.0	1.0	A_2	0.72	0.0	6.28	5.69
	1.0		±• 0	1.0					
G4	3.5	3.0	4.0	4.2	B_1	5.94	6.28	0.0	1.07
G5	4.0	3.9	5.0	5.3	B_2	5.27	5.69	1.07	0.0

$$d(\mathbf{p},\mathbf{q}) = d(\mathbf{q},\mathbf{p}) = \sqrt{(q_1 - p_1)^2 + (q_2 - p_2)^2 + \dots + (q_n - p_n)^2} = \sqrt{\sum_{i=1}^n (q_i - p_i)^2}.$$

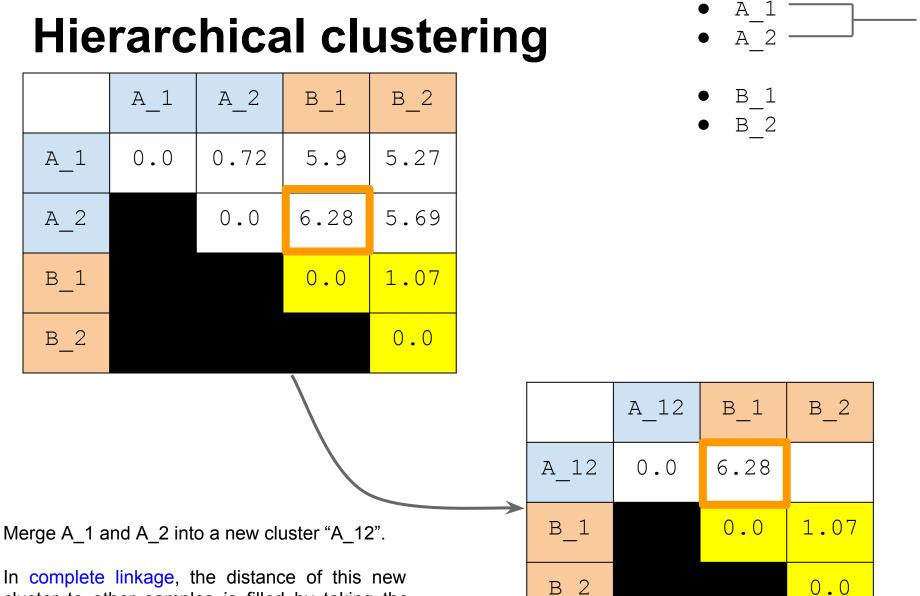
Euclidean distance is not the only way to define distance: manhattan distance, Lipschitz distance, correlation distance, etc. They all measure distance from a different perspective.

Cecilia Coimbra Klein


Start by finding the smallest non-diagonal element in the distance matrix. Merge these two samples together.

bcdef

abcde


	A_1	A_2	B_1	B_2	
A_1	0.0	0.72	5.9	5.27	• A_1 • A_2
A_2		0.0	6.28	5.69	• B_1
B_1			0.0	1.07	• B_2
B_2				0.0	hierarchical clustering
					bc de
					def

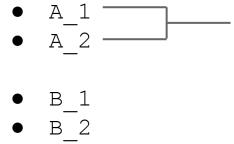
each sample.

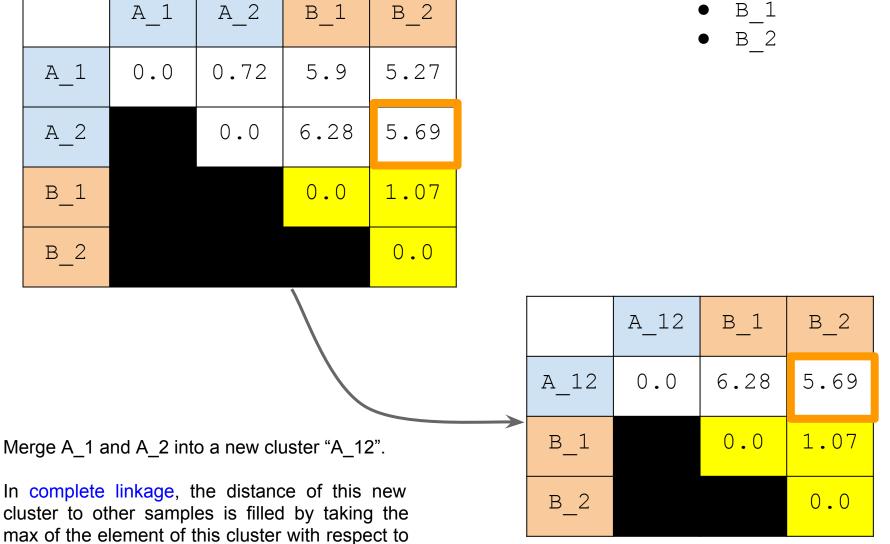
16

ΑJ

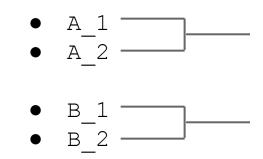
B_2

In complete linkage, the distance of this new cluster to other samples is filled by taking the max of the element of this cluster with respect to each sample.

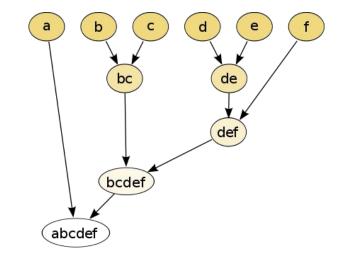

A 1


A 2

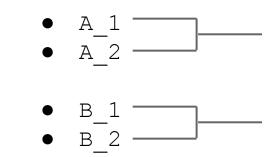
В 1

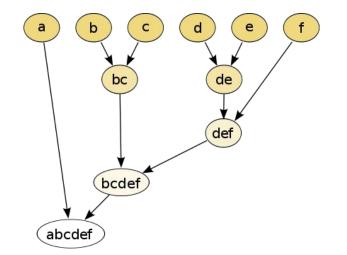

B_2

each sample.

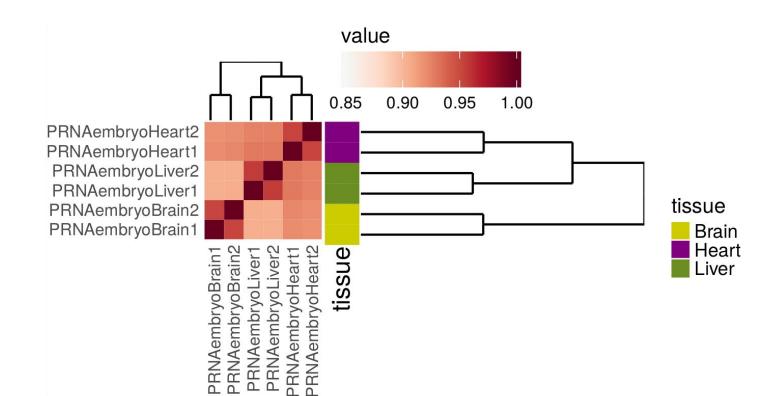


Now the merging is done, we find the smallest distance again.


	A_12	B_1	B_2
A_12	0.0	6.28	5.69
B_1		0.0	1.07
B_2			0.0

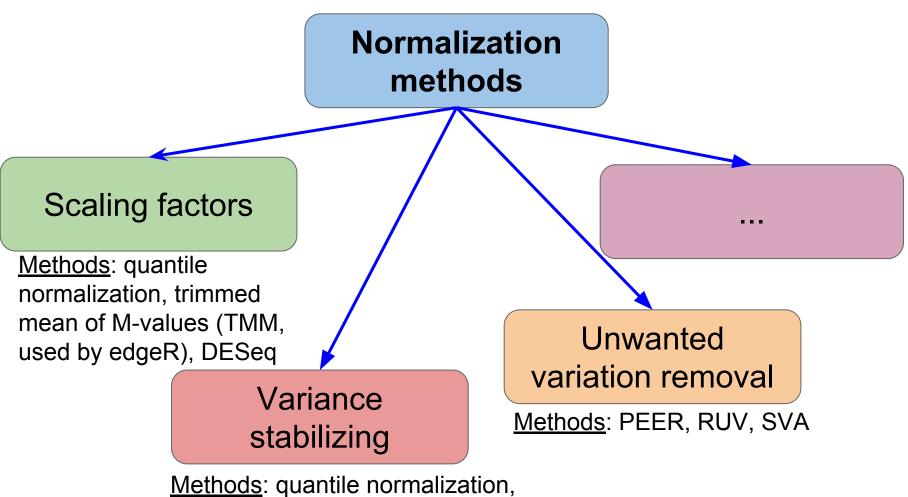


We recompute the distance matrix by selecting the maximum...


	A_12	B_1	B_2
A_12	0.0	6.28	5.69
B_1		0.0	1.07
B_2			0.0

	A_12	B_12
A_12	0.0	6.28
в_12		0.0

Samples clustering



Data normalization

Raw read counts can not be compared directly: different library size, gene length, gene abundance, <u>Normalization allows to:</u>

- Compare different datasets
- Compare different genes
- Remove unwanted variation

Normalization methods

trimmed mean of M-values (TMM, used by edgeR), DESeq

Cecilia Coimbra Klein

Differential gene expression (DGE)

Aim: identify genes that are more (less) expressed in one sample than in the other

Comparisons:

- pairwise with one factor (most common)
- pairwise with multiple factors
- among more than two samples
- time-series

Always better to have \geq 2 replicates per sample

Soneson, Charlotte, and Mauro Delorenzi. "A comparison of methods for differential expression analysis of RNA-seq data." *BMC bioinformatics* 14.1 (2013): 91.

Differential gene expression (DGE)

Sex	Sample	g ₁	g ₂	g ₃	
Male	A ₁				
Male	A ₂				
Male	A ₃				
Male	A ₄				
Female	B ₁				
Female	B ₂				
Female	B ₃				
Female	B ₄				

Cecilia Coimbra Klein

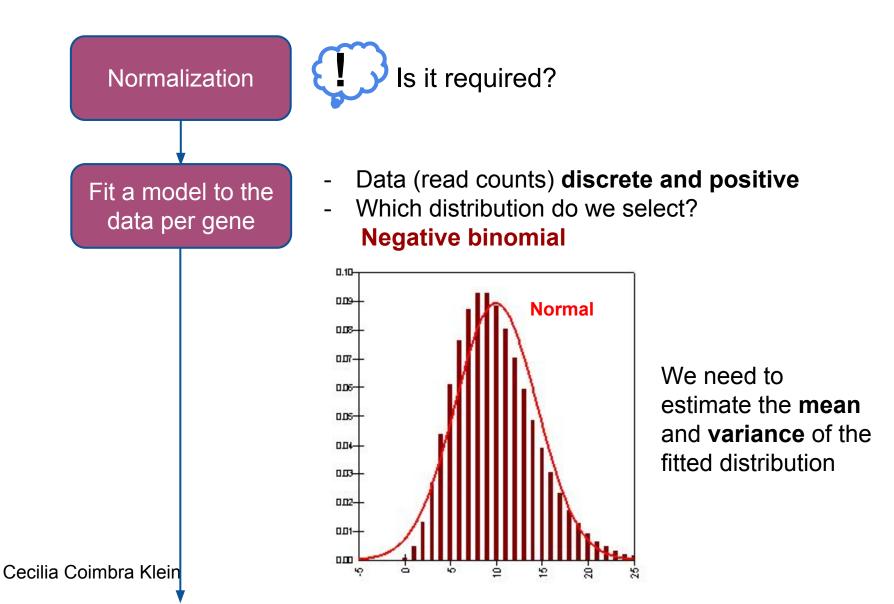
Software examples

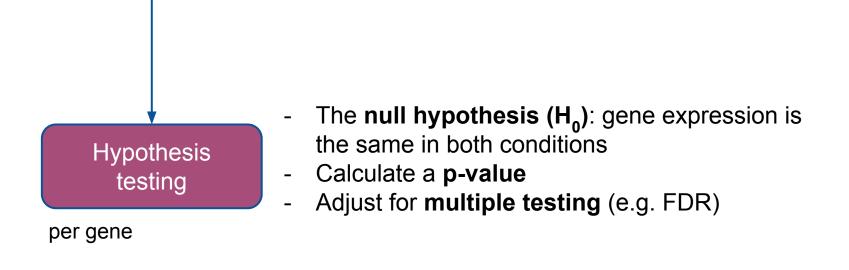
- edgeR (R package)
 - Robinson, McCarthy, Smyth, "EdgeR: a bioconductor package for for differential expression of digital gene expression data."
 Bioinformatics 26(1) (2010): 139-40.
- DESeq (R package)
 - O Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." *Genome biol* 11.10 (2010): R106.

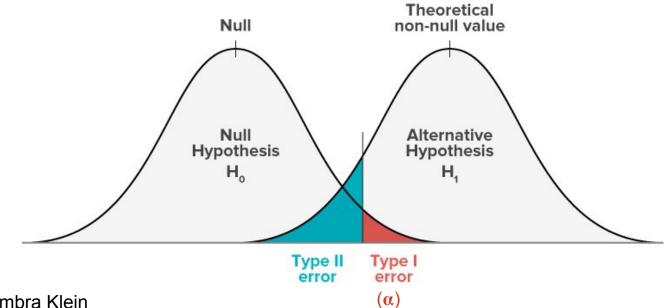
• DESeq2 (R package)

O Love, Michael I., Wolfgang Huber, and Simon Anders. "Moderated estimation of fold change and dispersion for RNA-Seq data with DESeq2." *Genome biology* 15.12 (2014): 550.

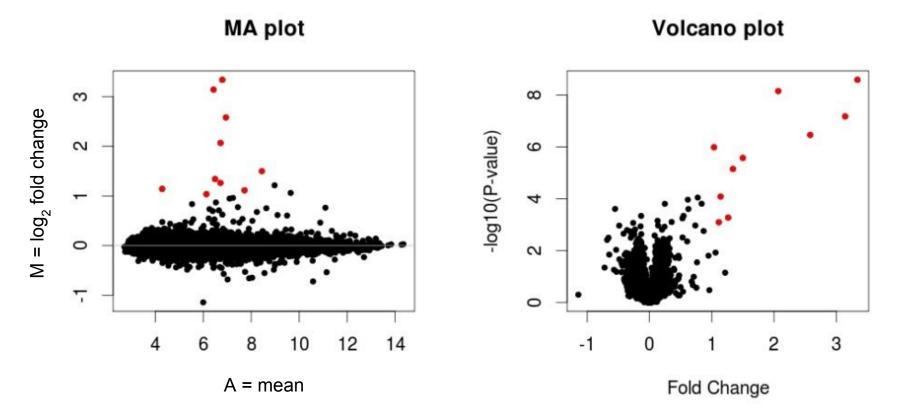
voom+limma (R package)


Law, Charity W., et al. "Voom: precision weights unlock linear model analysis tools for RNA-seq read counts." *Genome Biol* 15.2 (2014): R29.


• Cuffdiff 2


Trapnell, Cole, et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq." *Nature biotechnology* 31.1 (2013): 46-53.

Cecilia Coimbra Klein


Basics of DGE

Visualization: MA and volcano plots

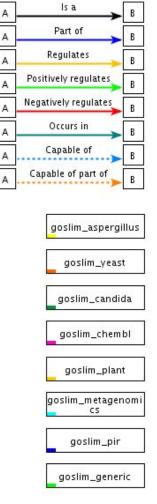
Cecilia Coimbra Klein

Gene Ontology Term Enrichment

Not good for IncRNAs!

Gene Ontology (GO)

- Allows to capture biological knowledge in a written and computable form.
- Defines concepts/classes used to describe gene function, and relationships between these concepts.
- Controlled vocabulary
- 3 main categories:
 - → Biological Process (BP)
 - \rightarrow Molecular Function (MF)
 - \rightarrow Cellular Component (CC)
- The same gene can have more than oneGO terms


The annotation is both manual and automatic

Cecilia Coimbra Klein

cell organelle cell part intracellular membrane-bo intracellular unded part organelle intracellular organelle intracellular membrane-bo unded organelle nucleus megasporocyte nucleus

cellular component

GO:0043076

QuickGO - http://www.ebi.ac.uk/QuickGO

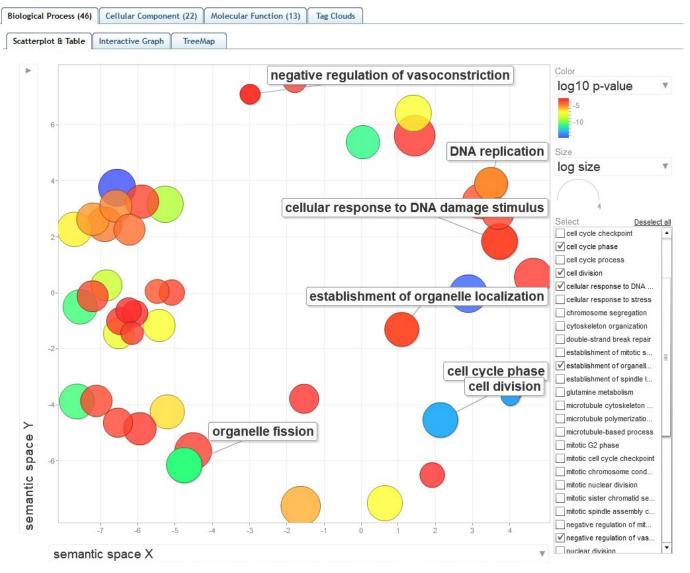
Gene Ontology Term Enrichment

Name extracellular matrix organization Ontology biological_process Synonyme extracellular matrix organisation, extracellular matrix organization and biogenesis Alternate IDs None Definition A process that is carried out at the cellular level which results in the assembly, arrangement of constituent parts, or disassembly of an extracellular matrix. Source: GOC:mah Comment None History See term history for GO:0030198 at QuickGO Subset goslim_generic goslim_chembl Link to all genes and gene products annotated to extracellular matrix organization.		extracellular matrix organization					
Name extracellular matrix organization Ontology biological_process Synonyms extracellular matrix organisation, extracellular matrix organization and biogenesis Alternate IDs None Definition A process that is carried out at the cellular level which results in the assembly, arrangement of constituent parts, or disassembly of an extracellular matrix. Source: GOC:mah Comment None History See term history for GO:0030198 at QuickGO Subset gosubset_prok goslim_generic goslim_chembl Related Link to all genes and gene products annotated to extracellular matrix organization.	Term Informa	ation 🕑					
Link to all direct and indirect annotations to extracellular matrix organization. Link to all direct and indirect annotations download (limited to first 10,000) for extracellular matrix organization.	Name Ontology Synonyms Alternate IDs Definition Comment History Subset	extracellular mat biological_proce extracellular mat None A process that is None See term history gosubset_prok goslim_generic goslim_chembl Link to all gene Link to all direct	ess trix organisation, extrace s carried out at the cellul of for GO:0030198 at Qui es and gene products and indirect annotation	ar level which results in the assembly, arrangement of constituent parts, or disassembly of an extracellular matrix. Source: GOC: ckGO annotated to extracellular matrix organization.	Data health ♥		
Annotations Graph Views Inferred Tree View Neighborhood Mappings	Annotations	Graph Views	Inferred Tree View	Neighborhood Mappings			

http://amigo.geneontology.org/amigo

Gene Ontology Term Enrichment

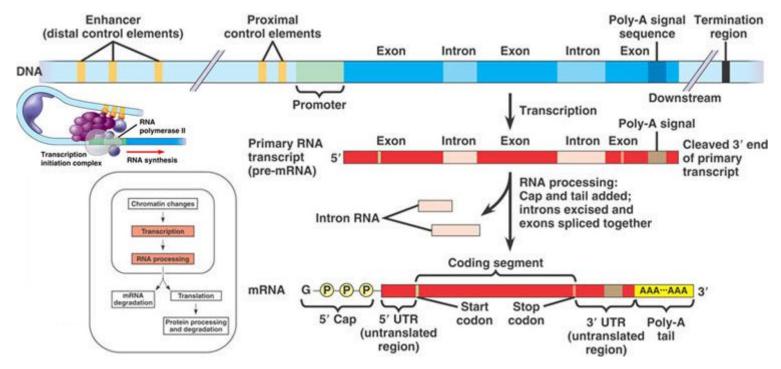
Aim: Does my set of genes (identified as differentially expressed) have characteristic GO terms associated to it?


Enrichment: we should look whether GO terms associated to the genes in my set are overrepresented with respect to a background set of genes.

There are many ways to statistically test this, and multiple software available online. One example is the R package GOstats, which can be run locally. It uses a hypergeometric test to assess the enrichment.

Other software: topGO, GOrilla, Metascape

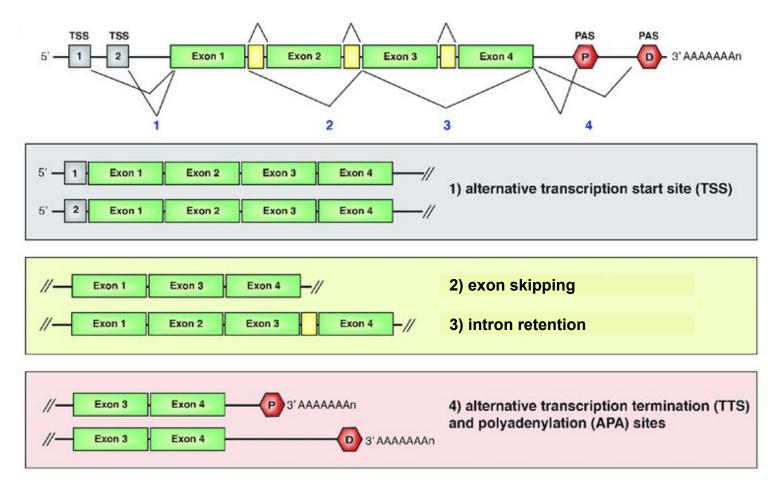
Visualization: REVIGO


http://revigo.irb.hr/

Cecilia Coimbra Klein

Alternative splicing

RNA transcription and processing



Primary RNA transcripts are extensively processed: capping, splicing, polyadenylation, editing

This process is highly regulated and results in a gene producing many distinct transcript isoforms: one gene, many transcripts Cecilia Coimbra Klein The transcriptome is distinct from and more complex than the genome

The transcriptome cannot be predicted from the genome sequence alone: it must be measured

Complexity arising from differential processing

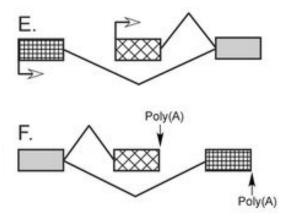
These processing events can result in different protein products, differentially (post-) transcriptionally regulated mRNAs or non-protein coding isoforms.

Cecilia Coimbra Klein


Andreassi, C. et al. (2018). doi: 10.3389/fnmol.2018.00304

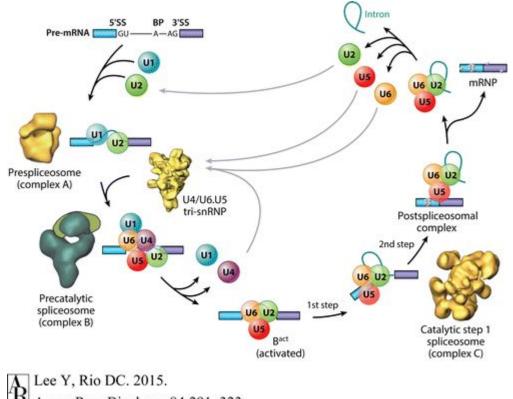
Complexity arising from differential processing

	Human ^b	Mouseb	Fly ^c	Worm ^c
Genome size	3,300 MB	3,300 MB	165 MB	100 MB
Protein-coding genes	22,180	22,740	13,937	20,541
Multiexonic genes (percentage with 2+ isoforms)	21,144 (88%)	19,654 (63%)	11,767 (45%)	20,008 (25%)
Isoforms (average number per gene)	215,170 (3.4)	94,929 (2.4)	29,173 (1.9)	56,820 (1.2)
Genes (all)	63,677	39,179	15,682	46,726


- pre-mRNA splicing scales with organismal complexity.
- Alternative pre-mRNA splicing occurs in ~88% of human genes, compared with ~63% of mouse genes.
- More recent deep RNA-seq data, 95% to 100% of human genes may encode two or more (2+) isoforms
- One function of alternative splicing is to significantly expand the form and function of the human proteome

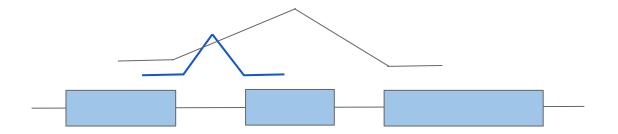
Modes of AS

Exons are represented as blue and yellow blocks, introns as lines in between.

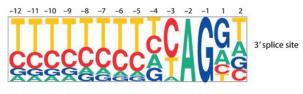

Alternative promoters and polyadenylation sites

Alternative promoters are primarily an issue of transcriptional control. Control of polyadenylation appears mechanistically similar to control of splicing.Both of these mechanisms are found in combination with alternative splicing and provide additional variety in mRNAs derived from a gene

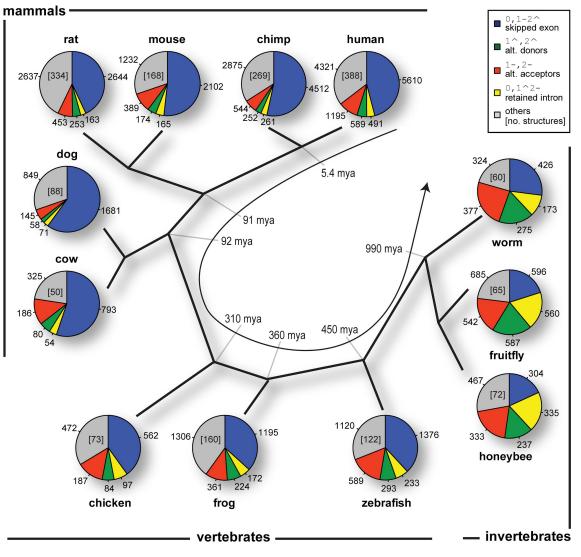
Black (2003) doi: 10.1146/annurev.biochem.72.121801.161720 https://en.wikipedia.org/wiki/Alternative_splicing

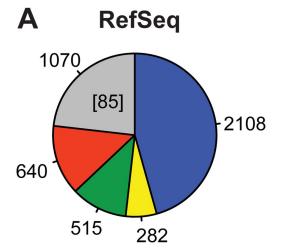

General splicing mechanism

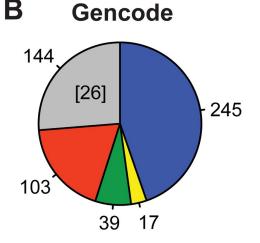
R Annu. Rev. Biochem. 84:291–323

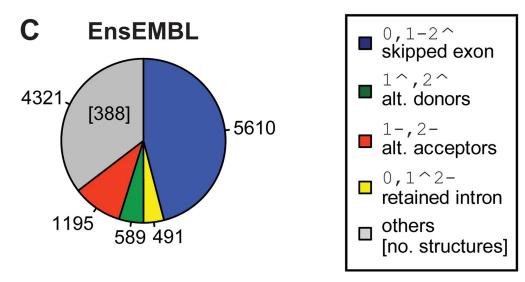

Lee & Rio (2015). doi:10.1146/annurev-biochem-060614-034316

Junctions


Splice sites in the human genome:

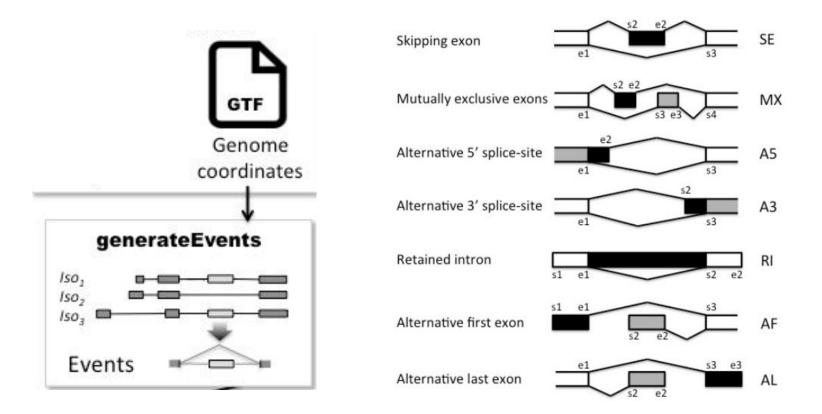

Lee Y, Rio DC. 2015. Annu. Rev. Biochem. 84:291–323

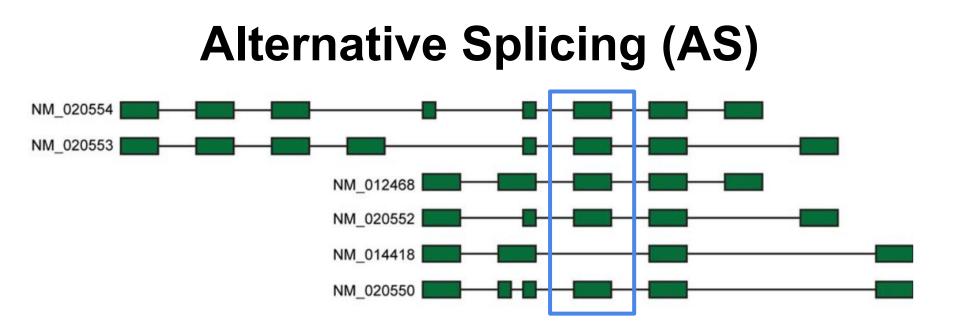

Comparative genomics of the AS landscape in 12 metazoa



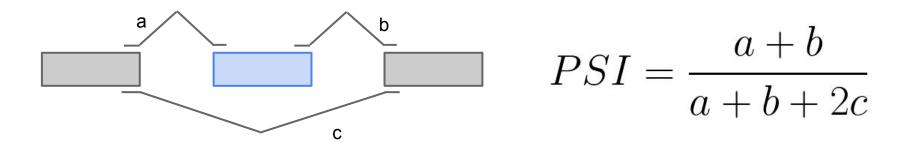
Sammeth, Foissac, Guigó (2008) PLoS Comput Biol 4(8): e1000147

AS landscape in human reference annotations

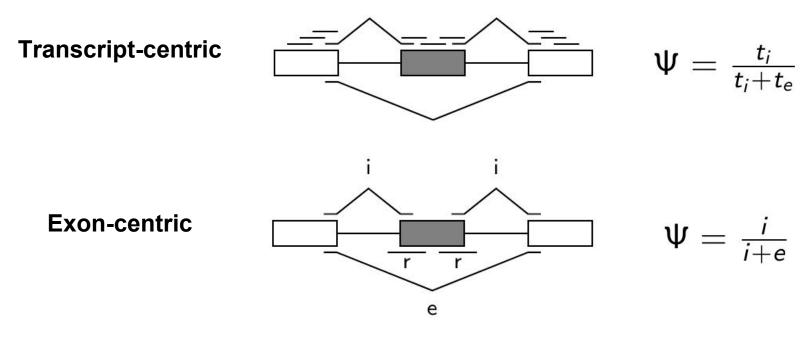




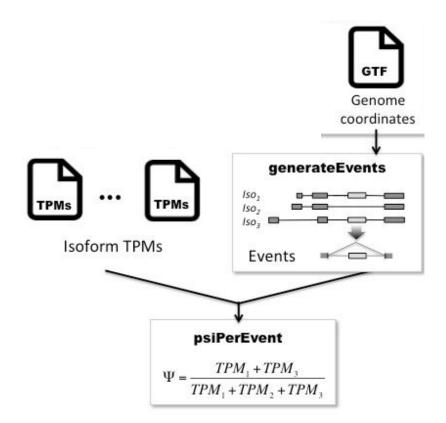
Sammeth, Foissac, Guigó (2008) PLoS Comput Biol 4(8): e1000147


SUPPA: generate events based on gene annotation

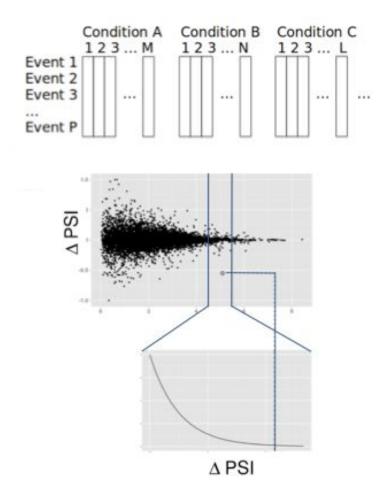
https://bitbucket.org/regulatorygenomicsupf/suppa



PSI = percent-spliced-in = the number of transcripts in which the given exon is included as a fraction of the number of transcripts in which it is included or excluded


More than one way to define PSI

PSI = Percent-Spliced-In


- i = inclusion
- e = exclusion
- r = retention

SUPPA: Quantify event inclusion levels (PSIs)

https://bitbucket.org/regulatorygenomicsupf/suppa

SUPPA: compare conditions

- SUPPA calculates the magnitude of splicing change (ΔPSI) and their significance across multiple biological conditions, using two or more replicates per condition.
- Statistical significance is calculated by comparing the observed ΔPSI between conditions with the distribution of the ΔPSI between replicates as a function of the gene expression (measured as the expression of the transcripts defining the events).

https://bitbucket.org/regulatorygenomicsupf/suppa

Hands-on Setup environment 1 RNA-seq data analysis 4

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

Hands-on

- Forebrain, heart and liver of 12.5 days mouse embryos
 - 2 bio replicates
 - RNA-seq, ChIP-seq and ATAC-seq
- References:
 - mouse genome mm10 assembly
 - gene annotation gencode vM4
- Processing:
 - References: a small sample of the genome and annotation (21 chromosomes, 1Mb long)
 - Data: one sample only (100,000 alignment-based pre-filtered reads)
- Analysis:
 - all samples

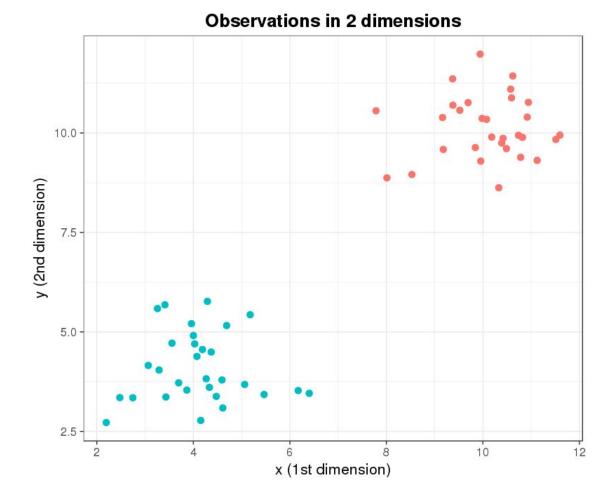
https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

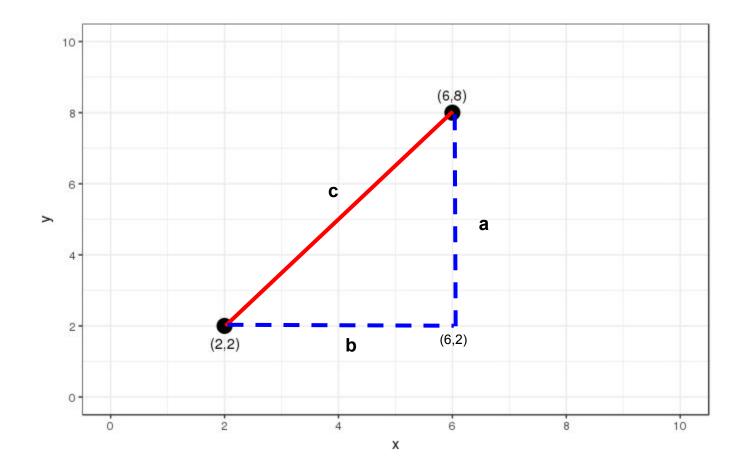
abreschi / Rscripts			⊙ W	Vatch 1 🕇 Star	⁰ [%] Fork 0
<> Code ① Issues o ₥ Pull real	quests o 4~ Pulse	III Graphs			
No description or website provided.					
112 commits	⊮ 1 branch		🛇 O releases	0 contrib	outors
Branch: master - New pull request		New file Find file	HTTPS- https://gi	thub.com/abre 🔒	Download ZIP
I Alessandra Breschi More extensive he	lp			Latest commit b7	e91c3 8 days ago
DESeq.analysis.R	commas and minus are co	commas and minus are converted to dots in metadata headers. Verbose o			a year ago
DEXSeq.analysis.R	initial commit add all R scripts 2 y			2 years ago	
GO_enrichment.R	full commit				23 days ago
KEGG_enrichment.R	full commit				23 days ago
PFAM_enrichment.R	initial commit add all R scr	ipts			2 years ago
SOM.R	script to use SOM				a year ago
VennDiagram.R	full commit				23 days ago
add_quantile.R	correct for 9				22 days ago
🖹 anova.R	More extensive help				8 days ago
barplot.GO.R	full commit				23 days ago
boxplot_expressed_isoforms.R	full commit				23 days ago
Cutree.R	full commit				23 days ago
differential_coSI.R	initial commit add all R scr	ipts			2 years ago
edgeR.analysis.R	full commit				23 days ago

https://github.com/abreschi/Rscripts

--help

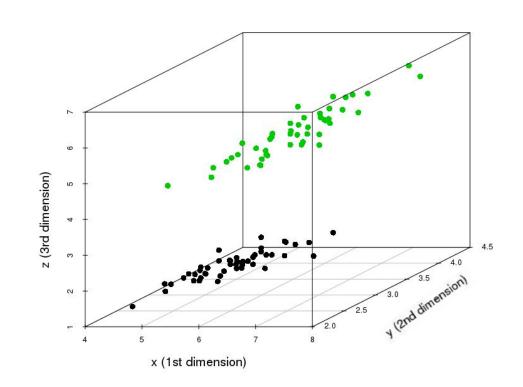
will provide input/output parameters


Rscript rpkm_fraction.R --help

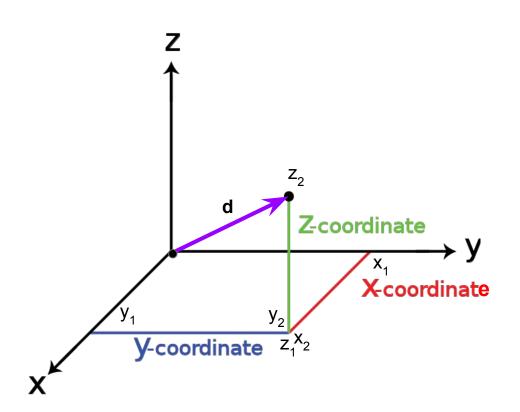

Usage: rpkm fraction.R [options] file **Options:** -i INPUT MATRIX, --input matrix=INPUT MATRIX the matrix you want to analyze [default=stdin] -m METADATA, --metadata=METADATA tsv file with metadata on matrix experiment -o OUTPUT, --output=OUTPUT additional tags for otuput -c COLOR BY, --color by=COLOR BY choose the color you want to color by. Leave empty for no color -y LINETYPE BY, --linetype by=LINETYPE BY choose the factor you want the linetype by. Leave empty for no linetype -f FILE SEL, --file sel=FILE SEL list of elements of which computing the proportion at each point --out file=OUT FILE store the coordinates in a file [default=NULL] -P PALETTE, --palette=PALETTE file with the colors -t TAGS, --tags=TAGS choose the factor by which grouping the lines [default=labExpld] -h, --help

Show this help message and exit Cecilia Coimbra Klein

Additional slides

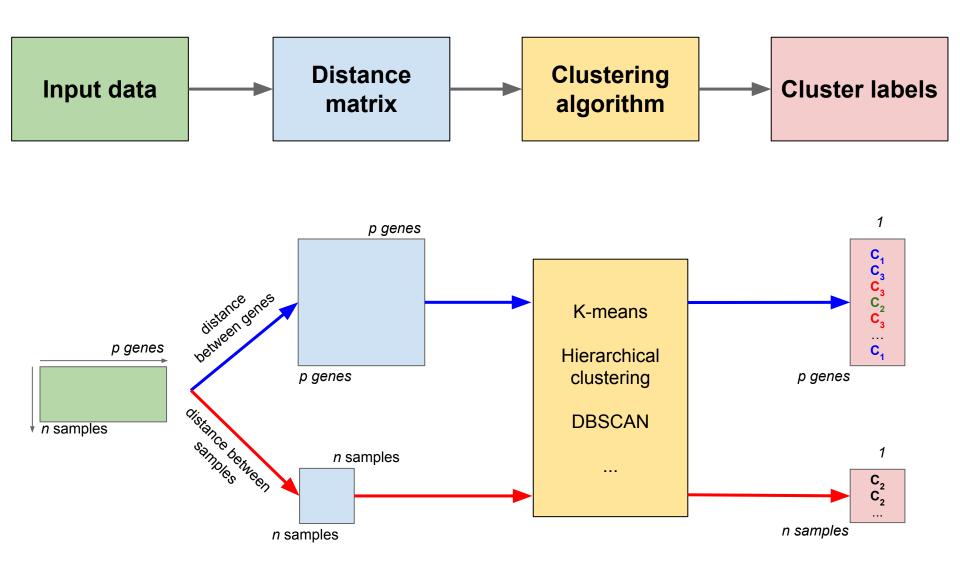


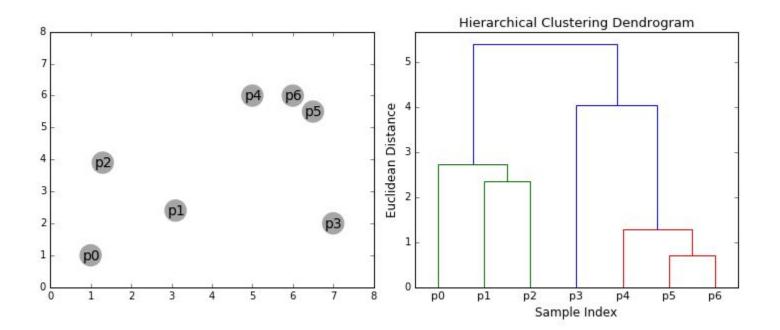
 $c^2 = a^2 + b^2 \rightarrow c = \sqrt{a^2 + b^2} \rightarrow c = \sqrt{(8 - 2)^2 + (6 - 2)^2}$

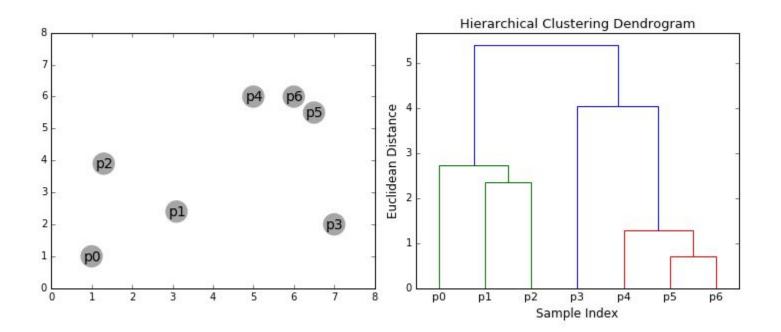

Going one dimension higher ...

x	У	z
6.2	2.8	4.8
5.8	2.7	5.1
5.1	3.8	1.6
6.7	2.5	5.8
6.5	3.0	5.2
5.4	3.7	1.5
5.1	3.3	1.7
6.7	3.0	5.2

Going one dimension higher ...

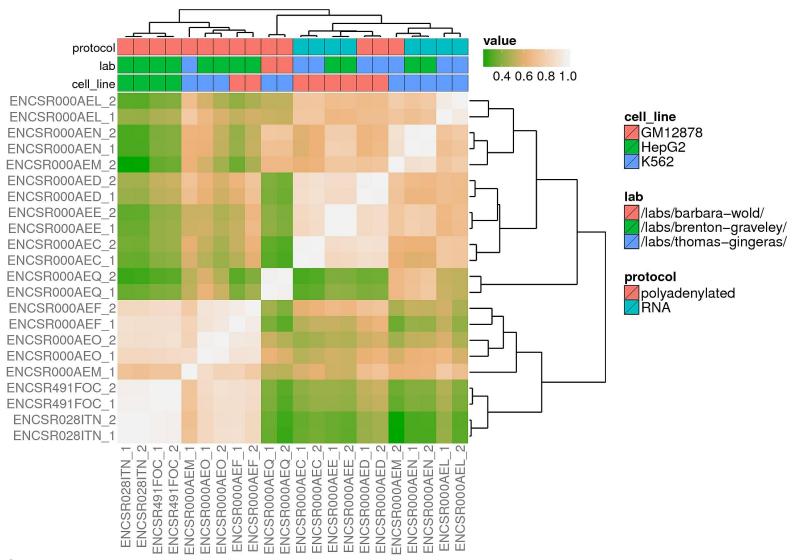

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

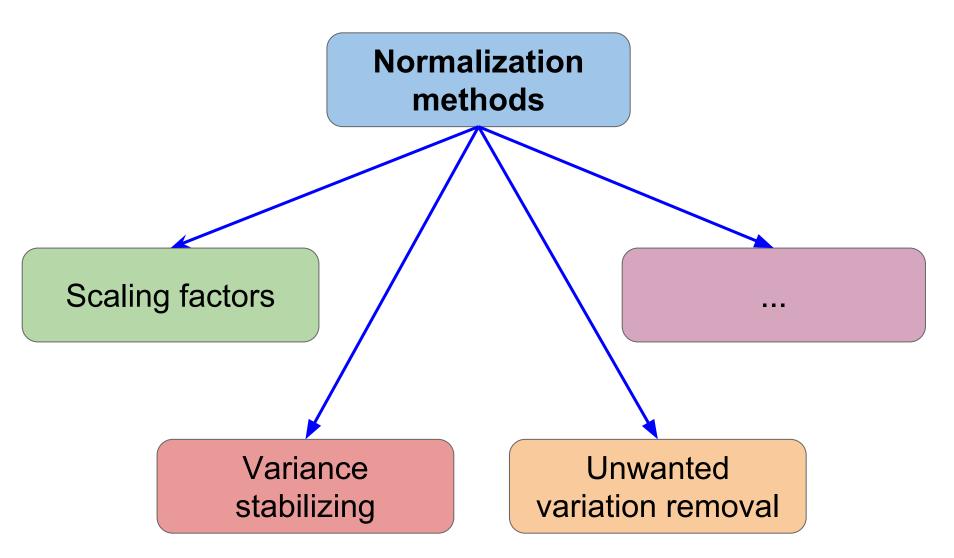

If we go up to 4, 5, ..., *n*-dimensional space, how can we know which points (observations) are close to each other?


Clustering overview

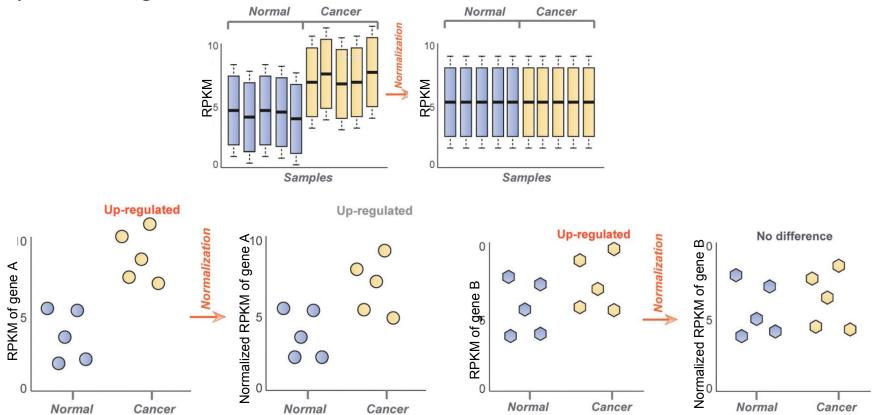
Hierarchical clustering: Seeks to build a hierarchy of clusters. To generate the "class label" for each sample, we cut the tree at a certain height.

Hierarchical clustering: Seeks to build a hierarchy of clusters. To generate the "class label" for each sample, we cut the tree at a certain height.

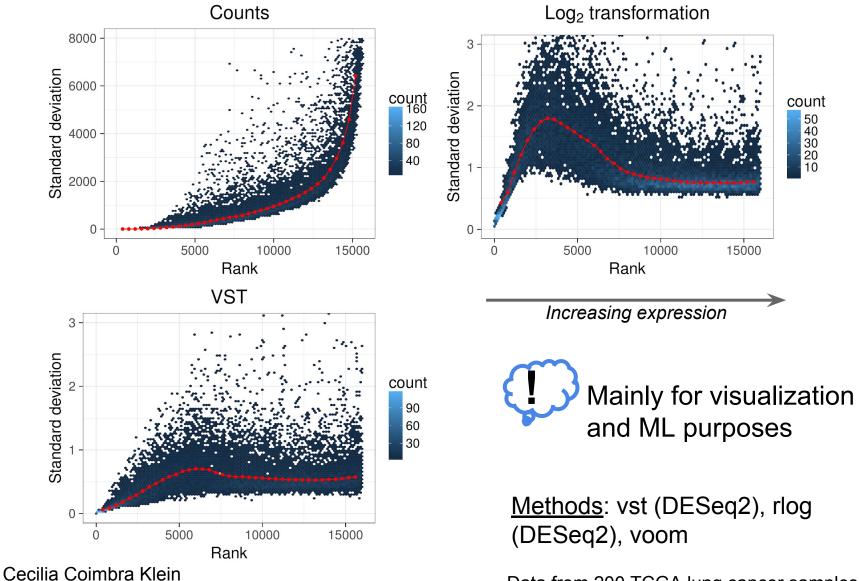

k-means: Partitions *n* observations into *k* clusters. Each observation will be assigned to the cluster with the nearest mean.



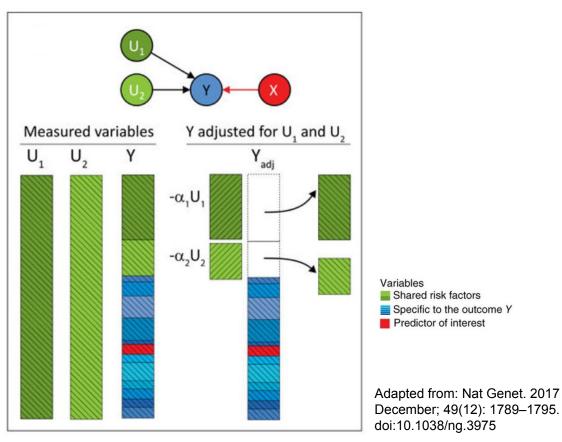
k-means: Partitions *n* observations into *k* clusters. Each observation will be assigned to the cluster with the nearest mean.



Samples clustering

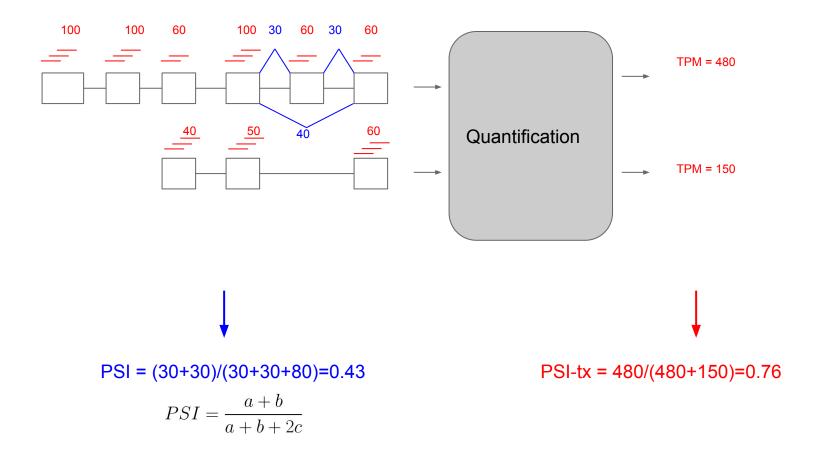

A) Scaling factors

Adapted from: Wu et al (2014). Deciphering global signal features of high-throughput array data from cancers. Molecular Biosystems.


<u>Methods</u>: quantile normalization, trimmed mean of M-values (TMM, used by edgeR), DESeq

B) Variance stabilizing

Data from 200 TCGA lung cancer samples ⁶⁶


C) Unwanted variation removal

Methods: PEER, RUV, SVA

More than one way to define PSI

PSI = Percent-Spliced-In

Look at the gene expression distribution

To spot possible biases, detect outliers and assess the similarity among samples

- Look at the RPKM/FPKM/TPM distribution for individual samples (min, max, mean, median)
- Compare distributions among samples
- Look at the samples clustering