Studying the transcriptome using RNA-seq

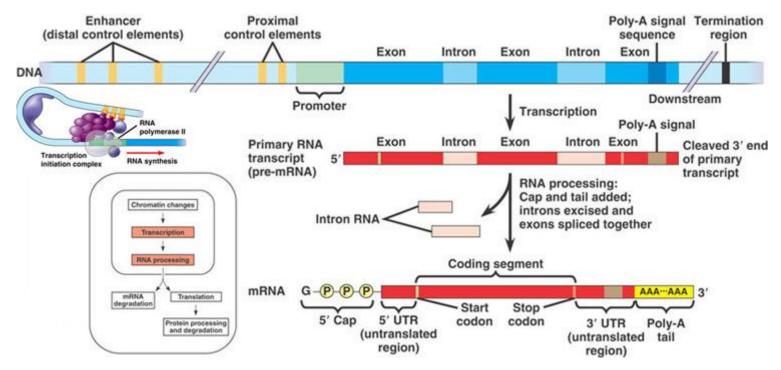
Cecilia Coimbra Klein

UNIVERSITAT DE VIC UNIVERSITAT CENTRAL DE CATALUNYA

Master in Omics Data Analysis

Outline

Outline

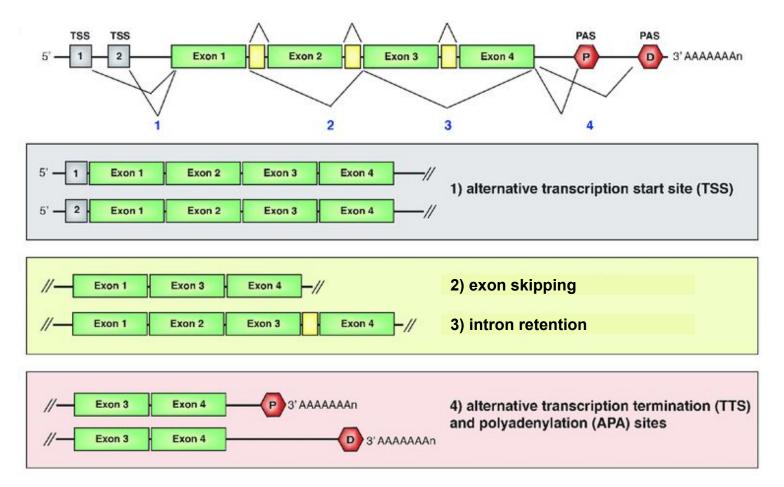

- 1. Introduction
- 2. Basic concepts
- 3. Short-read RNA-seq data processing
- 4. Gene level RNA-seq data analysis

5. Isoform level RNA-seq analyses

- 5.1. AS events from genomic annotation
- 5.2. PSI values
- 5.3. Differential splicing analysis
- 5.4. Functional analysis
- 6. Regulation of gene expression

Alternative splicing

RNA transcription and processing



Primary RNA transcripts are extensively processed: capping, splicing, polyadenylation, editing

This process is highly regulated and results in a gene producing many distinct transcript isoforms: one gene, many transcripts Cecilia Coimbra Klein The transcriptome is distinct from and more complex than the genome

The transcriptome cannot be predicted from the genome sequence alone: it must be measured

Complexity arising from differential processing

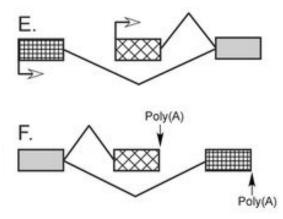
These processing events can result in different protein products, differentially (post-) transcriptionally regulated mRNAs or non-protein coding isoforms.

Cecilia Coimbra Klein


Andreassi, C. et al. (2018). doi: 10.3389/fnmol.2018.00304

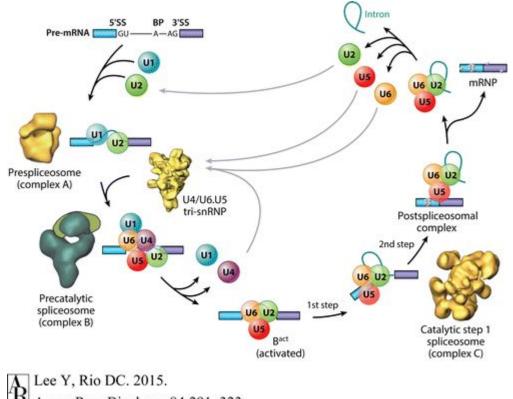
Complexity arising from differential processing

	Human ^b	Mouseb	Fly ^c	Worm ^c
Genome size	3,300 MB	3,300 MB	165 MB	100 MB
Protein-coding genes	22,180	22,740	13,937	20,541
Multiexonic genes (percentage with 2+ isoforms)	21,144 (88%)	19,654 (63%)	11,767 (45%)	20,008 (25%)
Isoforms (average number per gene)	215,170 (3.4)	94,929 (2.4)	29,173 (1.9)	56,820 (1.2)
Genes (all)	63,677	39,179	15,682	46,726


- pre-mRNA splicing scales with organismal complexity.
- Alternative pre-mRNA splicing occurs in ~88% of human genes, compared with ~63% of mouse genes.
- More recent deep RNA-seq data, 95% to 100% of human genes may encode two or more (2+) isoforms
- One function of alternative splicing is to significantly expand the form and function of the human proteome

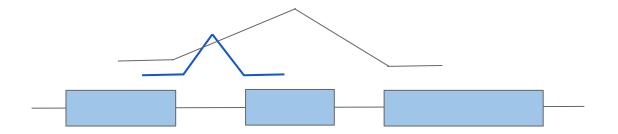
Modes of AS

Exons are represented as blue and yellow blocks, introns as lines in between.

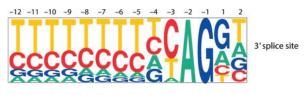

Alternative promoters and polyadenylation sites

Alternative promoters are primarily an issue of transcriptional control. Control of polyadenylation appears mechanistically similar to control of splicing.Both of these mechanisms are found in combination with alternative splicing and provide additional variety in mRNAs derived from a gene

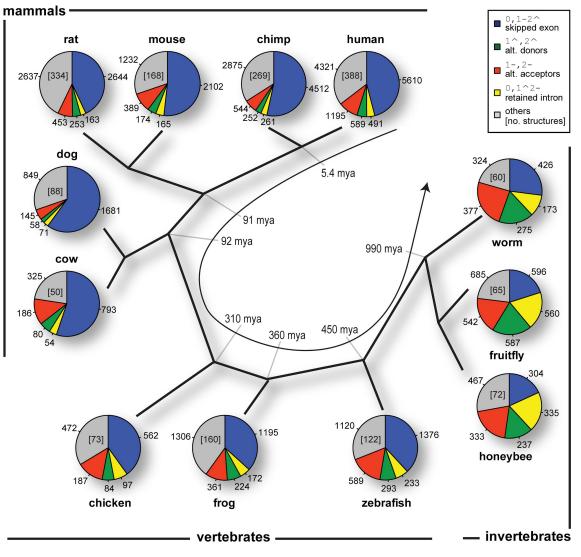
Black (2003) doi: 10.1146/annurev.biochem.72.121801.161720 https://en.wikipedia.org/wiki/Alternative_splicing

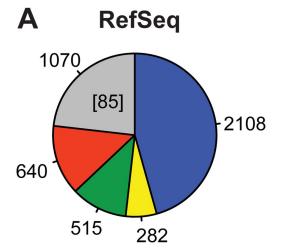

General splicing mechanism

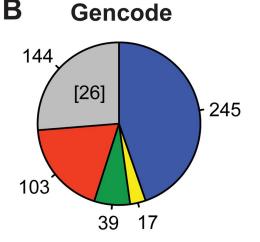
R Annu. Rev. Biochem. 84:291–323

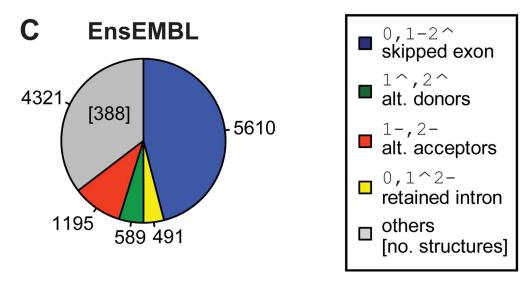

Lee & Rio (2015). doi:10.1146/annurev-biochem-060614-034316

Junctions


Splice sites in the human genome:

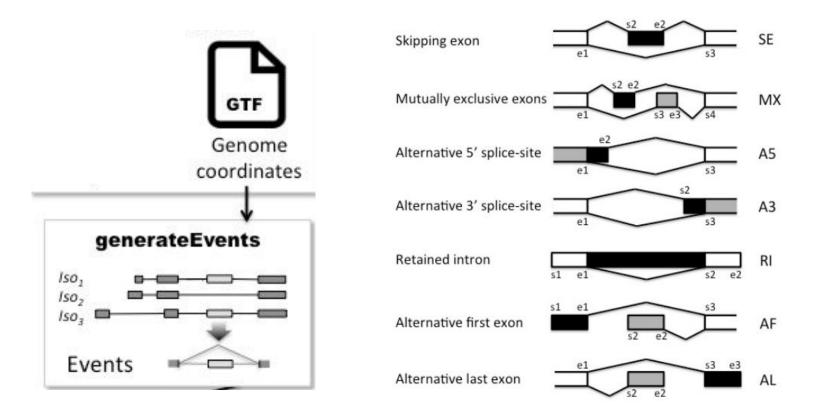

Lee Y, Rio DC. 2015. Annu. Rev. Biochem. 84:291–323

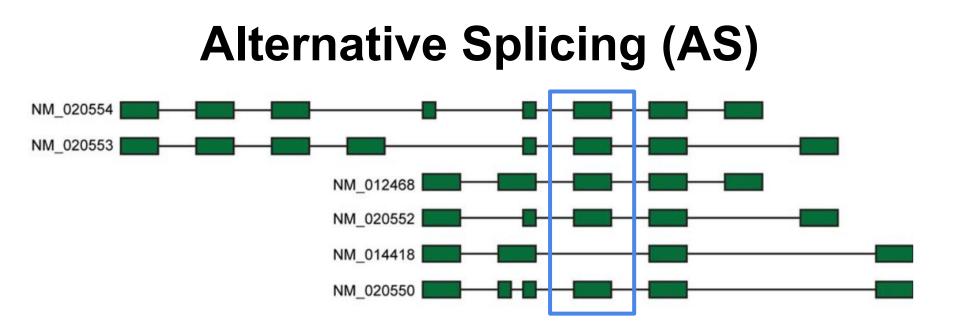

Comparative genomics of the AS landscape in 12 metazoa



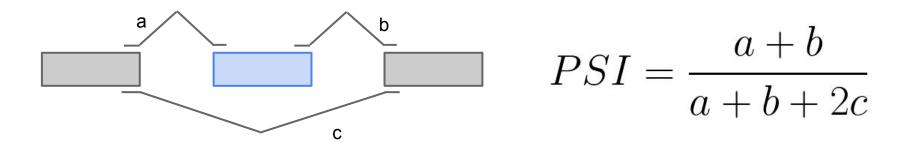
Sammeth, Foissac, Guigó (2008) PLoS Comput Biol 4(8): e1000147

AS landscape in human reference annotations

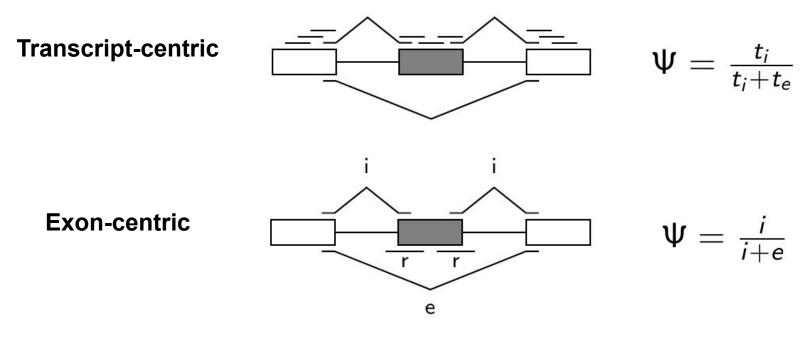




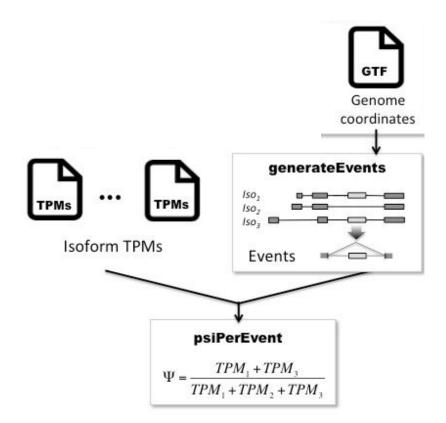
Sammeth, Foissac, Guigó (2008) PLoS Comput Biol 4(8): e1000147


SUPPA: generate events based on gene annotation

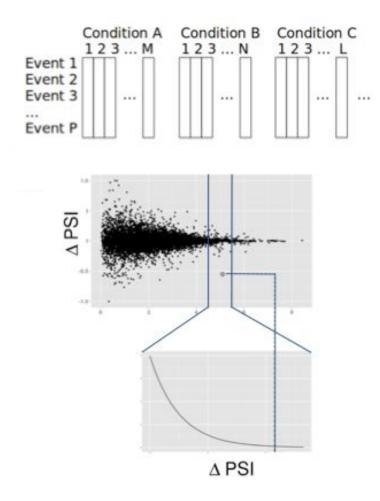
https://bitbucket.org/regulatorygenomicsupf/suppa



PSI = percent-spliced-in = the number of transcripts in which the given exon is included as a fraction of the number of transcripts in which it is included or excluded


More than one way to define PSI

PSI = Percent-Spliced-In


- i = inclusion
- e = exclusion
- r = retention

SUPPA: Quantify event inclusion levels (PSIs)

https://bitbucket.org/regulatorygenomicsupf/suppa

SUPPA: compare conditions

- SUPPA calculates the magnitude of splicing change (ΔPSI) and their significance across multiple biological conditions, using two or more replicates per condition.
- Statistical significance is calculated by comparing the observed ΔPSI between conditions with the distribution of the ΔPSI between replicates as a function of the gene expression (measured as the expression of the transcripts defining the events).

https://bitbucket.org/regulatorygenomicsupf/suppa

Hands-on Setup environment 1 RNA-seq data analysis 4

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

Hands-on

- Forebrain, heart and liver of 12.5 days mouse embryos
 - 2 bio replicates
 - RNA-seq, ChIP-seq and ATAC-seq
- References:
 - mouse genome mm10 assembly
 - gene annotation gencode vM4
- Processing:
 - References: a small sample of the genome and annotation (21 chromosomes, 1Mb long)
 - Data: one sample only (100,000 alignment-based pre-filtered reads)
- Analysis:
 - all samples

https://public_docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/

abreschi / Rscripts			0	Watch 1 ★ Star	0 % Fork 0
<>Code ① Issues o ₥ Pull real	quests o	III Graphs			
No description or website provided.					
112 commits	⊮ 1 branch		⊘ 0 releases	0 contrib	outors
Branch: master - New pull request		New file Find file	HTTPS- https://g	ithub.com/abre 🔂	Download ZIP
O Alessandra Breschi More extensive he	lp			Latest commit b7	e91c3 8 days ago
DESeq.analysis.R	commas and minus are	converted to dots in metac	lata headers. Verbose o		a year ago
DEXSeq.analysis.R	initial commit add all R so	cripts			2 years ago
GO_enrichment.R	full commit				23 days ago
KEGG_enrichment.R	full commit				23 days ago
PFAM_enrichment.R	initial commit add all R so	cripts			2 years ago
SOM.R	script to use SOM				a year ago
VennDiagram.R	full commit				23 days ago
add_quantile.R	correct for 9				22 days ago
anova.R	More extensive help				8 days ago
barplot.GO.R	full commit				23 days ago
boxplot_expressed_isoforms.R	full commit				23 days ago
≣ cutree.R	full commit				23 days ago
differential_coSI.R	initial commit add all R so	cripts			2 years ago
📄 edgeR.analysis.R	full commit				23 days ago

https://github.com/abreschi/Rscripts

--help

will provide input/output parameters

Rscript rpkm_fraction.R --help

Usage: rpkm fraction.R [options] file Options: -i INPUT MATRIX, --input matrix=INPUT MATRIX the matrix you want to analyze [default=stdin] -m METADATA, --metadata=METADATA tsv file with metadata on matrix experiment -o OUTPUT, --output=OUTPUT additional tags for otuput -c COLOR BY, --color by=COLOR BY choose the color you want to color by. Leave empty for no color -y LINETYPE BY, --linetype by=LINETYPE BY choose the factor you want the linetype by. Leave empty for no linetype -f FILE SEL, --file sel=FILE SEL list of elements of which computing the proportion at each point --out file=OUT FILE store the coordinates in a file [default=NULL] -P PALETTE, --palette=PALETTE file with the colors -t TAGS, --tags=TAGS choose the factor by which grouping the lines [default=labExpld] -h, --help

Show this help message and exit Cecilia Coimbra Klein