Studying the transcriptome using
RNA-seq
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4. Gene level RNA-seq data analysis
4.1. Sample clustering based on gene expression
4.2. Differential gene expression
4.3. Gene ontology (GO) term enrichment
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RNA-seq data analysis
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Analysis pipeline
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A practical example: Gene

expression matrix
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which samples are more
alike and which are
more different?

which genes are more
alike and which are
more different?

clustering: grouping
genes and/or samples
such that similar ones
are closer to each other



Distance matrix calculation
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Distance matrix calculation

Al|lA2 B1|B2 D BE

Gl 1.0|1.006.05.0 0.0 0.0

G2 |2.0|1.5/5.0|5.1 0.5 0.25
3 0.52

G3 11.0|1.1.1.0 (1.0 0.1 0.01
G4 3.5[3.0014.0 4.2 0.5 0.25 0.72

G5 4.03.905.0/5.3 0.1 0.01

Euclidean distance:

d(p,q) = d(q,p) = V(g1 — )2 + (@2 —p2)? + -+ (g — Pa)? = | D (g — pi)?.
1=1



Distance matrix calculation
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Distance matrix calculation
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Distance matrix calculation
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Distance matrix calculation

Gl 1.011.0 (6.0]5.0

G2 2.011.515.0(5.1

G3 1.011.1(1.0}1.0

G4 3.513.014.0(4.2

G5 4.013.9(15.0]15.3 —

d(p,q) = d(q,p) = V(@1 — p1)> + (2 — p2)? + -+ (@ — Pa)2 = | ) (¢ — pi)2.
1=1



Distance matrix calculation
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4 x4
1 | A2 | B1 | B2
.0 0.72 5.9 5.277
72 0.0 6.28 | 5.69
.94 | 6.28 0.0 1.07
27 1 5.69 | 1.07 0.0

d(p,q) =d(q,p) = V(@1 — p1)2+ (g2 —p2)2 + -+ (g — Pn)2 =

\:

Z( q; — Pi )2
1=1

Euclidean distance is not the only way to define distance: manhattan
distance, Lipschitz distance, correlation distance, etc.
They all measure distance from a different perspective.
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Hierarchical clustering

Start by finding the smallest non-diagonal element in the distance matrix. Merge
these two samples together.
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hierarchical clustering
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Hierarchical clustering ¢ a2
A1l | A2 | B1 | B2 e B 1
e B 2

Al 0.0 0.72 5.9 | 5.27

.69

Merge A_1 and A_2 into a new cluster “A_12".

In complete linkage, the distance of this new
cluster to other samples is filled by taking the
max of the element of this cluster with respect to
each sample.
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Hierarchical clustering

Now the merging is done, we find the smallest

distance again.
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Hierarchical clustering .

We recompute the distance matrix by selecting
the maximum...
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Samples clustering
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Data normalization

Raw read counts can not be compared directly: different
library size, gene length, gene abundance, Normalization

allows to:

e Compare different datasets
e Compare different genes

e Remove unwanted variation
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Normalization methods

Normalization
methods

/\

Scaling factors

Methods: quantile
normalization, trimmed

mean of M-values (TMM, U ted
used by edgeR), DESeq _ nwan =
: variation removal
VEIEIEE Methods: PEER, RUV, SVA
e s 0gas. ; ;
stabilizing =

Methods: vst (DESeq2), rlog
(DESeqg2), voom
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Differential gene expression (DGE)

A

im: identify genes that are more (less) expressed in one

sample than in the other

Comparisons:

pairwise with one factor (most common)
pairwise with multiple factors

among more than two samples
time-series

Always better to have 2 2 replicates per sample

Soneson, Charlotte, and Mauro Delorenzi. "A comparison of methods for differential
expression analysis of RNA-seq data." BMC bioinformatics 14.1 (2013): 91.
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Differential gene expression (DGE)
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Software examples

e edgeR (R package)

O Robinson, McCarthy, Smyth, "EdgeR: a bioconductor package for for differential expression of digital gene expression data."

Bioinformatics 26(1) (2010): 139-40.

e DESeq (R package)

O Anders, Simon, and Wolfgang Huber. "Differential expression analysis for sequence count data." Genome biol 11.10 (2010): R106.
e DESeq2 (R package)

O Love, Michael ., Wolfgang Huber, and Simon Anders. "Moderated estimation of fold change and dispersion for RNA-Seq data with
DESeq2."Genome biology 15.12 (2014): 550.

e voom+limma (R package)

O Law, Charity W., et al. "Voom: precision weights unlock linear model analysis tools for RNA-seq read counts." Genome Biol 15.2

(2014): R29.

o Cuffdiff 2

O Trapnell, Cole, et al. "Differential analysis of gene regulation at transcript resolution with RNA-seq." Nature biotechnology 31.1

(2013): 46-53.
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Basics of DGE

Normalization @ s it required?

- Data (read counts) discrete and positive
- Which distribution do we select?
Negative binomial

Fit a model to the
data per gene
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- The null hypothesis (H,): gene expression is
the same in both conditions

- Calculate a p-value

- Adjust for multiple testing (e.g. FDR)

Hypothesis

testing

per gene

Theoretical
Null non-null value

Null Alternative
Hypothesis Hypothesis
H H
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Typell Typel
error error
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Visualization: MA and volcano plots
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Gene Ontology Term Enrichment

G0:0043076
Gene Ontology (GO) - Gl L[]
e Allows to capture biological [+] — > |
knowledge in a written and cel organell Pasitively regulates
computable form. — e [ | Mgy regutes [
e Defines concepts/classes used to iR [ L Y
describe gene function, and cp‘:”;p‘f»
relationships between these Ij
concepts. e e
e Controlled vocabulary intracelular e " _
e 3 main categories: el ) LB L
-> Biological Process (BP) ntraceluar gostim_candida
-> Molecular Function (MF) goslim_chembi
- Cellular Component (CC) membrans-bo i
e The same gene can have more than S —
oneGO terms oulleus -
o TaPINCo goslim_pir
The annotation is both manual and megasporocyte gosiim_generic
automatic

QuickGO - http:/ /ww.ebi.ac.uk/QuickGO

Cecilia Coimbra Klein @Not good for IncRNAs! http://geneontology.org/ 29



Gene Ontology Term Enrichment

extracellular matrix organization

Term Information @

Accession GO:0030198 Data health ¥
Name extracellular matrix organization
Ontology biological_process
Synonyms extracellular matrix organisation, extracellular matrix organization and biogenesis
Alternate IDs None
Definition A process that is carried out at the cellular level which results in the assembly, arrangement of constituent parts, or disassembly of an extracellular matrix. Source: GOC:mah
Comment None
History See term history
Subset gosubset_prok
goslim_generic
goslim_chembl
Related to all genes and gene products annotated to extracellular matrix organization.
(5[,'Y to all direct and indirect annotations to extracellular matrix organization.
to all direct and indirect annotations download (limited to first 10,000) for extracellular matrix organization

GO:0030198 at QuickGO

Annotations Graph Views Inferred Tree View Neighborhood Mappings

ent organization or biogenesis

http://amigo.geneontology.org/amigo
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Gene Ontology Term Enrichment

Aim: Does my set of genes (identified as differentially
expressed) have characteristic GO terms associated to it?

Enrichment: we should look whether GO terms associated to
the genes in my set are overrepresented with respect to a
background set of genes.

There are many ways to statistically test this, and multiple
software available online. One example is the R package
GOstats, which can be run locally. It uses a hypergeometric
test to assess the enrichment.

Other software: topGO, GOirilla, Metascape
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Visualization: REVIGO http://revigo.irb.hr/
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http://revigo.irb.hr/

Hands-on

Gene level RNA-seq
data analysis 4

https://public-docs.crg.es/rquigo/Data/cklein/courses/UVIC/handsOn/#

gene level rna seq data analysis
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