Studying the transcriptome using **RNA-seq**

Cecilia Coimbra Klein

Data Analysis

Outline

1. Introduction

2. Basic concepts

- 2.1. Hands-on:
 - 2.1.1.Basic Linux Commands
 - 2.1.2.Git and GitHub
 - 2.1.3.Docker
- 2.2. RNA-seq:
 - 2.2.1.RNA biology
 - 2.2.2.NGS technologies
 - 2.2.3.RNA-seq experimental design
 - 2.2.4. Reference gene annotation
 - 2.2.5.Data formats
- 3. Short-read RNA-seq data processing
- 4. Gene level RNA-seq data analysis
- 5. Isoform level RNA-seq analyses
- 6. Regulation of gene expression

We are going to run all the commands of the hands-on within a Docker container using basic Linux commands and scripts from Git.

2.1.1. Bash shell

Linux and Mac : The Bash shell is available on Linux and Mac OS.

Windows : Use VirtualBox or VMWare player to import this virtual machine with Ubuntu 18.04 and Docker pre-installed. Follow the instructions provided by Diego Garrido <u>here</u>.

Browse the directory structure

pwd	tells you where you are
ls	list the content of the current directory
ls <directory name=""></directory>	list the content of a directory
cd <directory name=""></directory>	go to the specified directory
cd ~ (or cd)	go to your home directory
cd	go to the parent directory
tree <directory name=""></directory>	list the content of a directory in a tree-like format
mkdir <directory name=""></directory>	creates specified directory

View the content of a file

less, more	view text with paging
head	prints first lines of a file
tail	prints last lines of a file
cat	print content of a file into the screen
zcat	print content of a gzip compressed file

File manipulations

rm <file name=""></file>	remove file			
cp <file1> <file2></file2></file1>	copy file1 into file2			
mv <file1> <file2></file2></file1>	rename file1 to file2			

Some other useful commands

grep <pattern></pattern>	show lines of text containing a given pattern
grep -v <pattern></pattern>	show lines of text not containing a given pattern
sort	sort linesof text files
wc	counting words, lines and characters
> (output redirection)	allows to redirect the output to a file
(pipe)	allows to send output from one program to another
cut	to extract portion of a file by selecting columns
echo	input a line of text and display it on standard output

AWK programming

AWK programming

AWK - UNIX shell programming language. A fast and stable tool for processing text files.

awk '/www/ { print \$0 }' <file></file>	search for the pattern 'www' in the each line of the file
awk '\$3=="www"' <file></file>	search for pattern 'www' in the third column of the file
awk 'length(\$0) > 80' <file></file>	print every line in the file that is longer than 80 characters
awk 'NR % 2 == 0' <file></file>	print even-numbered lines in the file

Some built-in variables

NR	Number of records
NF	Number of fields
FS	Field separator character
OFS	Output field separator character

Basics Git and GitHub

Basics Git and GitHub

- Git is a *fast* and *modern* implementation of version control.
- Git provides history of content change.

• Git facilitates collaborative changes to files.

https://git-scm.com/video/what-is-version-control

Basics Git and GitHub

Git is the free and open source distributed **version control** system that's responsible for everything **GitHub** related that happens locally on your computer.

GitHub is the most widely used web-based hosting service for version control using Git.

Basics Docker

Basics Docker

Reproducibility

- Docker provides the ability to package and run an application in a loosely isolated environment called a container.
- Containers are lightweight and contain everything needed to run the application, so you do not need to rely on what is currently installed on the host.
- You can easily share containers while you work, and be sure that everyone you share with gets the same container that works in the same way.

Basics Docker

IMAGES

Docker images are a lightweight, standalone, executable package of software that includes everything needed to run an application: code, runtime, system tools, system libraries and settings.

CONTAINERS

A container is a runtime instance of a docker image. A container will always run the same, regardless of the infrastructure.

DOCKER HUB

Docker Hub is a service provided by Docker for finding and sharing container images with your team. Learn more and find images at <u>https://hub.docker.com</u>

Same results in all containers

https://public-docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/#_ basic_concepts_and_setup

RNA biology

Molecular biology dogma

- Only ~1% of the human genome produces proteins, although much more is transcribed (~60%).
- The genome is identical in all cell types, however not all cell types have the same function. That's why the transcriptome (and the epigenome) becomes also relevant.

RNA transcription and processing

Primary RNA transcripts are extensively processed: capping, splicing, polyadenylation, editing

This process is highly regulated and results in a gene producing many distinct transcript isoforms: one gene, many transcripts Cecilia Coimbra Klein The transcriptome is distinct from and more complex than the genome

The transcriptome cannot be predicted from the genome sequence alone: it must be measured

Genome and transcriptome

Some definitions:

- Genome: the full DNA complement of a species' cell
- Gene: the physical region of a chromosome producing some kind or RNA transcript
- Isoforms: distinct RNAs arising from the gene, through differential exon inclusion, transcription start or termination sites.
- Transcript: The RNA molecule corresponding to one of the isoforms
- Transcriptome: the full RNA complement of a species' cell

Complexity arising from differential processing

These processing events can result in different protein products, differentially (post-) transcriptionally regulated mRNAs or non-protein coding isoforms.

Cecilia Coimbra Klein

Andreassi, C. et al. (2018). doi: 10.3389/fnmol.2018.00304

Complexity arising from differential processing

	Human ^b	Mouseb	Fly ^c	Worm ^c
Genome size	3,300 MB	3,300 MB	165 MB	100 MB
Protein-coding genes	22,180	22,740	13,937	20,541
Multiexonic genes (percentage with 2+ isoforms)	21,144 (88%)	19,654 (63%)	11,767 (45%)	20,008 (25%)
Isoforms (average number per gene)	215,170 (3.4)	94,929 (2.4)	29,173 (1.9)	56,820 (1.2)
Average number of unique exons per gene (median)	33 (26)	22 (15)	7.5 (4)	8.6 (6)
Average number of unique introns per multiexonic gene (median)	28 (21)	19 (12)	8.7 (5)	7.2 (5)
Average exon length (median length)	320 bp (145 bp)	323 bp (141 bp)	494 bp (272 bp)	222 bp (157 bp)
Average intron length (median length)	7,563 bp (1,964 bp)	6,063 bp (1,693 bp)	2,068 bp (642 bp)	561 bp (354 bp)
Genes (all)	63,677	39,179	15,682	46,726
Isoforms (all) (average number per gene)	215,170 (3.4)	94,929 (2.4)	29,173 (1.9)	56,820 (1.2)

Lee & Rio (2015). doi:10.1146/annurev-biochem-060614-034316

RNA composition in the cell

- Only part of the human transcriptome encode proteins
- Many different type of regulatory RNAs, small <200nt and long >200nt
- IncRNAs: transcribed by RNA Polymerase II, actively processed
- Functionally important, have many signatures of mRNAs
- XIST, HOTAIR, TelRNAs

Reference gene annotation

Reference gene annotation

- For a given species and associated genome assembly, the reference gene annotation is the collection of all genes known for this species
- A gene annotation (like a genome assembly) can be at various completion stages depending on the species. High-quality annotations: human, mouse, *D. melanogaster*, *C. elegans* or yeast.
- It is important to choose well the reference gene annotation beforehand since it will represent the known transcriptome to which the RNA-seq transcriptome will be compared.

Always check the annotation version you're going to use.

Gencode annotation

https://www.gencodegenes.org/

- **4 broad gene categories**: protein-coding genes (~20,000), long non-coding genes, pseudogenes, small non-coding genes
- Several features: gene, transcript, exon, CDS, UTR
- 3 confidence levels: automatically annotated < manually annotated < validated
- File formats: GTF/GFF3

Cecilia Coimbra Klein

GENCODE

Gencode IncRNA gene annotation

- Gencode has always annotated IncRNA genes and was calling them "processed_transcript"
- Since they are more and more numerous and interesting to people, Gencode now better classifies them, partly using their location to PCGs:

3prime_overlapping_ncrna	Transcripts where ditag and/or published experimental data strongly supports the existence of long non-coding transcripts transcribed from the 3'UTR.
sense_intronic	Long non-coding transcript in introns of a coding gene that does not overlap any exons.
sense_overlapping	Long non-coding transcript that contains a coding gene in its intron on the same strand.
antisense	Transcript believed to be an antisense product used in the regulation of the gene to which it belongs.
non_coding	Transcript which is known from the literature to not be protein coding.
processed_transcript	Doesn't contain an ORF.
lincRNA	Long, intervening noncoding (linc)RNAs, that can be found in evolutionarily conserved, intergenic regions.

GTF format

a text-based format for storing features information

chr17 ENSEMBL CDS 46900485 46900542 gene_id "ENSMUSG0000036858"; transcript_id "ENSMUST00000041012"; exon number "1"; gene name "Ptcra"; gene_type "IG C_gene"; transcript name "Ptcra-201"; protein_id "EN SMUSP00000035683"; transcript type "IG C gene"; chr17 ENSEMBL CDS 46895493 46895813 gene id "ENSMUSG0000036858"; transcript id "ENSMUST00000041012"; exon_number "2"; gene_name "Ptcra"; gene_type "IG_C_gene"; transcript_name "Ptcra-201"; protein_id "EN SMUSP00000035683"; transcript_type "IG_C_gene"; chr17 ENSEMBL CDS 46893969 46894013 gene id "ENSMUSG00000036858"; transcript id "ENSMUST00000041012"; exon_number "3"; gene_name "Ptcra"; gene_type "IG_C_gene"; transcript_name "Ptcra-201"; protein_id "EN SMUSP00000035683"; transcript type "IG C gene"; . - 2 gene_id "ENSMUSG00000036858"; transcript id chr17 ENSEMBL CDS 46893179 46893351 "ENSMUST00000041012"; exon number "4"; gene name "Ptcra"; gene type "IG C gene"; transcript name "Ptcra-201"; protein id "EN SMUSP00000035683"; transcript type "IG C gene"; . - . gene_id "ENSMUSG00000036858"; transcript_id chr17 ENSEMBL exon 46893176 46893351 "ENSMUST00000041012"; exon_number "4"; gene_name "Ptcra"; gene_type "IG_C_gene"; transcript_name "Ptcra-201"; transcript_typ e "IG_C_gene"; chr17 ENSEMBL exon 46893969 46894013 gene_id "ENSMUSG0000036858"; transcript_id "ENSMUST00000041012"; exon number "3"; gene name "Ptcra"; gene_type "IG C_gene"; transcript name "Ptcra-201"; transcript typ e "IG C gene"; chr17 ENSEMBL exon 46895493 46895813 gene id "ENSMUSG0000036858"; transcript id "ENSMUST00000041012"; exon_number "2"; gene_name "Ptcra"; gene_type "IG_C_gene"; transcript_name "Ptcra-201"; transcript typ e "IG_C_gene"; gene_id "ENSMUSG0000036858"; transcript_id chr17 ENSEMBL exon 46900485 46900542 "ENSMUST00000041012"; exon number "1"; gene name "Ptcra"; gene_type "IG C_gene"; transcript name "Ptcra-201"; transcript typ features e "IG_C_gene"; chr17 ENSEMBL intron 46893352 gene id "ENSMUSG0000036858"; transcript id 46893968 "ENSMUST00000041012"; exon number "3"; gene name "Ptcra"; gene type "IG C gene"; transcript name "Ptcra-201"; transcript typ e "IG C gene"; chr17 ENSEMBL intron 46894014 46895492 gene id "ENSMUSG0000036858"; transcript id "ENSMUST00000041012"; exon_number "2"; gene_name "Ptcra"; gene_type "IG_C_gene"; transcript_name "Ptcra-201"; transcript_typ e "IG C gene": chr17 ENSEMBL intron 46895814 46900484 gene_id "ENSMUSG0000036858"; transcript id "ENSMUST00000041012"; exon number "1"; gene name "Ptcra"; gene type "IG C gene"; transcript name "Ptcra-201"; transcript typ e "IG C gene"; chr17 ENSEMBL start codon gene id "ENSMUSG0000036858"; transc 46900540 46900542 ript id "ENSMUST00000041012"; exon_number "1"; gene_name "Ptcra"; gene_type "IG_C_gene"; transcript_name "Ptcra-201"; transc ript_type "IG_C_gene"; chr17 ENSEMBL stop_codon 46893176 46893178 gene id "ENSMUSG00000036858"; transc ript_id "ENSMUST00000041012"; exon_number "4"; gene_name "Ptcra"; gene_type "IG_C_gene"; transcript_name "Ptcra-201"; transc ript type "IG C gene"; chr17 ENSEMBL transcript 46893176 46900542 gene id "ENSMUSG0000036858": transc ript id "ENSMUST00000041012"; exon_number "4"; gene_name "Ptcra"; gene_type "IG_C_gene"; transcript_name "Ptcra-201"; transc ript type "IG C gene"; 46900542 . - . gene_id "ENSMUSG00000036858"; transcript id chr17 ENSEMBL gene 46893176 "ENSMUSG00000030858"; gene type "IG_C gene"; gene status "NULL"; gene name "Ptcra"; transcript type "IG C gene"; transcript status "NULL"; transcript_name "Ptcra";

https://public-docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/#_r eference_gene_annotation

Next generation sequencing

NGS: Illumina sequencing

• <u>Illumina Sequencing</u> (short reads ~ max. 150bp)

illumina®

- single end
 - 1) Library preparation: DNA fragmentation, adapter ligation, PCR amplification
 - 2) Solid-phase bridge amplification
 - 3) Flowing of fluorescent reversible terminator dNTPs; incorporation of a single base per cycle. *Sequencing by synthesis*.
 - 4) Read identity of each base of a cluster from sequential images
- paired end

5) After completion of the first read, the templates can be regenerated *in situ* to enable a second read from the opposite end.

NGS: Third generation sequencing

- Although Illumina is by far the most popular, there are many other sequencing technologies, such as <u>PacBio</u>, <u>Ion Torrent</u> or <u>Oxford</u> <u>NanoPore</u> that:
 - allow sequencing genomic material without neither fragmentation nor clonal amplification.
 - enable getting longer reads (tens of Kb!), but at the price of a much higher error rate than Illumina.
 - have been mostly used for genome sequencing, since those reads can span complicated repeat-rich regions which are trickier to assemble using short reads.

Which *-Seq do I need?

- Learn more about your favourite *-Seq <u>here</u>!
- Note that we are always talking about *re-sequencing*, which is something different from *de novo sequencing* (what is done for a new genome assembly)

RNA sequencing

Why is it useful?

- Measure gene and transcript expression at different conditions, developmental stages, etc.
- Discover / annotate novel elements: genes (coding and non-coding), transcripts, exons, (chimeric) junctions, circular RNAs, etc.
- Alternative splicing, transcription start and termination (polyadenylation) sites.

Experimental design

RNA-seq experiment

Experimental variables of RNA-seq

Cellular			Preparation
localization	purification		Single end
Whole cell	Total RNA	Size selection	Paired end
Chromatin	PolvA+	Long (>200nt)	
Exosome		Short (<200nt)	Strandness
Nucleus	Pibo]	Stranded
Cytoplasm			Unstranded

Special protocols

Single-cell RNA-seq

Nascent RNA-seq (GRO-seq/NUN-seq)

miRNA-seq

Experimental variables of RNA-seq

Special protocols

Single-cell RNA-seq

Nascent RNA-seq (GRO-seq/NUN-seq)

miRNA-seq

Experimental variables of RNA-seq

Special protocols

Single-cell RNA-seq

Nascent RNA-seq (GRO-seq/NUN-seq)

miRNA-seq

RNA purification protocol

- PolyA+ gets rid of the ribosomal RNAs and purify mature polyadenylated transcripts.
- **PolyA-** enrichs for non-mature RNAs
- Ribo- gets rid of the ribosomal RNAs but capture both mature and non-mature RNAs

Preparation

Library preparation

Strandness

How much to sequence?

Depends on multiple factors:

- goal of experiment
- protocol
- species
- etc.

e.g. in humans:

>30M reads for simple analyses>100M reads for novel elements discovery

100% -Percent Detected 80% 60% Class Junctions 40%-Transcripts Genes 20%-Toung, J. (2011) doi: 10.1101/gr.116335.110 ò 100 200 300 400 500 600 700 800 900 Number of Reads (in millions)

Multiple Copies of a Genome

Data formats

Typical pipeline

Typical pipeline

a text-based format for storing biological sequences and their corresponding quality scores

Optionally: The sequence id can be followed by a description

a text-based format for storing biological sequences and their corresponding quality scores

a text-based format for storing biological sequences and their corresponding quality scores

Optionally: "+" can can be followed by the sequence id and any description

a text-based format for storing biological sequences and their corresponding quality scores

FASTQ Format - summary

Four lines per sequence are used in a FASTQ file:

- 1. begins with a '@' character and is followed by a sequence identifier and an *optional* description (like a <u>FASTA</u> title line)
- 2. the raw sequence
- 3. begins with a '+' character and is *optionally* followed by the same sequence identifier (and any description)
- 4. encodes the quality values for the sequence contained in line2 (must contain the same number of symbols as the sequence)

FASTQ Format - quality offset

A quality value Q is an integer mapping of p (i.e., the probability that the corresponding base call is incorrect). The most used formula is the <u>Phred quality score</u>:

 $Q_{phred} = -10 \log_{10} p$

offset	max Phred score range	max ASCII range	real-world Phred score range	real-world ASCII range
33	0 - 93	33 - 126	0 - 40	33 - 73
64	0 - 62	64 - 126	0 - 40	64 - 104

SAM format Sequence Alignment/Map

				· · · · · · · · · · · · · · · · · · ·										
(dhd	VN:1.3	S0:coo	rdinate											
@SQ	SN:chr1	LN:197	195432				-l							
RG	ID:0	PG:GEM	PL:ILL	UMINA	SM:0	пеа	aers							
@PG	ID:GEM	PN:gem	-2-sam	VN:1.	.837	J								
HW1-STS	85:73:CU	BBWACAA	:8:230Z:	12130:4	48553	165	chr1	3030539	0	*		3030539	0	А
TGAAAA1	IGAAGCCAC	AACGTAC	CCAAACCT	TTGGGAG	CACAATGAA	AGCATTTCT	AAGAGGGA	AACTCATAG	CTCTGAG	TACCTCCA	AGAAGAAA	CGGGAG	CCCFFFFF	H
ННННЈЈЈ	JJJJJIFHIJ	JJIIJJJ	13333333	ככככככנ	JJJIJIIJJ.	ככככככנווכ	JHHHHHFF	FFFFFEEEC	EEDDDDD	DDDDDDDDD	DDDDB9	RG:Z:0		
HWI-STS	985:73:C0	8BWACXX	:8:2302:	12130:4	48553	89	chr1	3030539	119	101M	=	3030539	0	С
TCCAAGA	AGAAACGG	GAGAGAG	CACATACT	AGCAGCT	TTGACAACA	САТСТАААА	GCTCTAGA	AAAAAAGGA	AGCAAAT	TCACCCAA	GAGGAGTA	GACGGT	DCDDDDDD	D
DDDBDDD	DDEEEEEE	EDFFFFF	FHHHHGIJ	JJJJJJHHF	FJJJJJJJJJ	JJIGJIJHJ	נננננננננ	JJJIJJGIG	HFJJJJJI	JHHHHHFF	FFFCCC	RG:Z:0	NH:i:3	Ν
M:i:0	XT:A:R	md:Z:1	01											
HWI-STS	985:73:C0	8BWACXX	:8:2208:	2017:40	9383	99	chr1	3055370	180	101M		3055454	185	G
ATCTCT	GATATGGC	AGTCTCT	AGATGGTC	CATCCTT	TTTGTCTCA	CCTCCAAAC	TTTGTCTG	TGTAACTCT	TTCCATT	GGTGTTTT	GTTCCCAAT	TACTAA	@@@DDDDDD)F
>=DFEG=	EAACHGEH	GIIDBH>	FHCB@BFH	HIIIII	IICBGGIGG	IGIIIIIHI	I@=CHEIG	IIIIEECGD	@=AHECD	DECACCCC	@<2222	RG:Z:0	NH:i:1	N
M:i:0	XT:A:U	md:Z:1	01											
HWI-ST9	985:73:C0	8BWACXX	:8:2208:	2017:40	9383	147	chr1	3055454	180	101M	=	3055370	-185	Т
TTGTTC	CAATACTA	AGAAGGG	GCAAAGTO	STTGACAC	CTTTGGTCT	TCATTCTTC	TTGAGTTT	CATGTGTTT	CACAAAT	TGTATCTT	ATATCTTG	GGTATT	BDBDCD@@	ĴΕ
C>;CCDE	EFFFFDE;A	C>@71HC	CCCC@=EC	FEIHFCI	IGHFFBGHE	IIG@IIGGE	IJIIIHII	IJIJJHJGG.	JIGIIGI	GF?DHHEB	DDD@@B	RG:Z:0	NH:i:1	Ν
M:i:0	XT:A:U	md:Z:1	01											
HWI-STS	985:73:C0	8BWACXX	:8:2103:	17437:1	175854	99	chr1	3197333	254	66M612	1N35M	=	3197379	б
268	TGAAGTG	TCTGTTG	GATTAATT	AACTGCA	AATTCATCT	CCAGTAAAA	TTTGGTAA	GTTCCAATG	TTTATGA	AAGAAGAG	TGGAGGAT	CTGTTGGAT	TGTTT	0
CCFFDFF	ННННЫЭЭЭ	ככככככ	DDDDDDDHH	IIIJJJJJ	JJJJHJJJJ	2222222222	IJIJJJJJJ	HHJJJJJGIJ.	JJJFHIC	GIIGHEEF	FFFFEEDDI	EEDCDC	RG:Z:0	N
H:i:1	NM:i:1	XT:A:U	md:Z:6	6>6121*	*35									
HWI-STS	985:73:C0	8BWACXX	:8:2103:	17437:1	175854	147	chr1	3197379	254	20M612	1N81M	=	3197333	-
6268	TTTGGTA	AGTTCCA	ATGTTTAT	GAAAGAA	AGAGTGGAG	GATCCTGTT	GGATTGTT	TGGCTGGAC	ACTATTA	CATTGGAA	CTGTGTTC	ACAGAATCAA	AAGCTG	<
DDDDDEE	EECACFFFF	FFHHHHH	ннээээээ	12222222	נככככככככ	JJIHGJJJI	JJJJJJJIG	HDDDDDDIDD	1000000	ICCCCCCCC	JHHHHHFFI	FFFCCC	RG:Z:0	Ν
H:i:1	NM:i:1	XT:A:U	md:Z:8	\$1>6121*	*20									
			Alia	nment										

SAM format Sequence Alignment/Map

More specification on SAM format:

https://samtools.github.io/hts-specs/SAMv1.pdf

BAM format

compressed binary representation of the SAM format

- specific block compression
 - BGZF
- support random access through the **index**
 - fast retrieval of alignments overlapping a specified region

BAM file must be sorted by genomic position (chromosome name and leftmost coordinate) in order to be indexed!

CRAM format

improved compressed binary representation of SAM

- different compression formats
 - gzip, bzip2, CRAM records
- CRAM records use different encoding strategies, e.g. bases are reference compressed by encoding base differences rather than storing the bases themselves
- random access support through the format itself (slices)

CRAM indexing is external to the file format itself and may change independently of the file format specification in the future

BED format

provides a flexible and compact way to represent genomic regions (with breaks)

- 3 required fields + additional 9 fields

chr1	3030538 3030639 HWI-ST985:73:C08BWACXX:8:2302:12130:48553/1	119	-	3030538 3030639 255,0,0 1
101	0			
chr1	3055369 3055470 HWI-ST985:73:C08BWACXX:8:2208:2017:40383/1	180	+	3055369 3055470 255,0,0 1
101	0			
chr1	3055453 3055554 HWI-ST985:73:C08BWACXX:8:2208:2017:40383/2	180		3055453 3055554 255,0,0 1
101	0			
chr1	3197332 3203554 HWI-ST985:73:C08BWACXX:8:2103:17437:175854/1	254	÷	3197332 3203554 255,0,0 2
66,35	0,6187			
chr1	3197378 3203600 HWI-ST985;73:C08BWACXX:8:2103:17437:175854/2	254		3197378 3203600 255,0,0 2
20,81	0,6141			
T	le northe de la club a clitica a require d'Étal de marian			
DIOCK	length block position required fields region			

10) blockCount - The number of blocks (exons) in the BED line.

11) blockSizes - A comma-separated list of the block sizes. The number of items in this list should correspond to blockCount.

12) blockStarts - A comma-separated list of block starts. All of the *blockStart* positions should be calculated relative to *chromStart*. The number of items in this list should correspond to *blockCount*.

https://genome.ucsc.edu/FAQ/FAQformat.html#format1

bedGraph and wig formats

bedGraph

- allows the display of continuous-valued data
- useful for probability scores and transcriptome data (CHIp-seq, RNA-seq)
- is a text file

track type=bedGraph name="BedGraph Format" description="BedGraph format" visibility=full color=200,100,0 altColor=0,100,200 priority=20 chr19 49302000 49302300 -1.0 chr19 49302300 49302600 -0.75

wig

- allows the display of continuous-valued data
- more compressed than bedGraph
- is a text file

fixedStep chrom=chr3 start=400601 step=100

22

33

bigBed, bigWig

Useful formats to display data on the UCSC genome browser

- BED, bedGraph, wig are tab delimited text files
- bigBed, bigWig are binary version of this files
- for each type of file there is a specific procedure to make a binary form
 - easily transferable
 - not so big
 - allows indexed access

https://public-docs.crg.es/rguigo/Data/cklein/courses/UVIC/handsOn/#_ common_file_formats