Introduction to Perl programming
Session |

Ernesto Lowy
CRG Bioinformatics core

Basic Unix

v During the course all exercises are done using the
terminal

v Terminal — an interface that allows users to run
commands through the command line interface.

v Prompts for commands and execute them after
pressing of Enter

v All commands are case-sensitive

v Windows terminal commands are not exactly the
same as in UNIX

Exercise 1: Where am [?

Launch terminal

Mac OS WINDOWS
click here

P v |

Use drop-down controls below and press refresh to alter tracks displayed. < [
(82223 Tracks with lots of items will automatically be displayed in more compact modes. Lol Programs (4)
Command Prompt
¥ Perl (command ling
=3 () | Performs text-based (command-line) functio
8 MySQL Command Line Clifit
Visual Studio 2008 Command Prompt

Control Panel (5)

File Edit View Terminal Help
[avlasova@croscat ~1$ []

&l show or hide common icons on the desktop
& Troubleshooting

@ Control the computertt '
Command Prompt

Microsoft Windows [Version 6.1.76811

=

Documents (596)

% COMM Copyright (c) 2089 Microsoft Corporation. All rights reserved. :
. commen C:\Users\toniher>_
[2) rReaDME

Files (5)

vim-commeon
__| vim-common-7.3.393

vim-commeon
-~ See more results

f comm|

=

G B

Path
pwd current location chdir
s folder content dir

Basic Unix: commands

Path
pwd & get current path

Is & list folder content
Is -| < list folder content in long format

cd <« change to home folder
cd ../../relative/path/

cd /absolute/path/

Folders

mkdir <dir_name> & make
rmdir <dir_name> & delete
rm -rf <dir_name> & delete
cp -rf <dir1> <dir2> & copy

mv -rf <dirl> <dir2> & move

Files

touch <file_name> & change timestamp

less <file_name> & show file content
cp <file1> <file2> & copy filel to file2
mv <file_name> <new_file> & move file
rm <file_name> <new_file> & delete file

cat <file1> <file2><& concatenate files

Other

<command> -h & command help

man <command>¢ manual pages

ps alh & list process in human readable
format

kill & stop program by process 1D
zip <file_name> & compress file

unzip <file_name> & uncompress file

Exercise 2: First file.

v Create folder for course exercises 'perlcourse2012'

S mkdir perlcourse2012

v Launch gedit
S gedit

v Type a random text and save file with name 'test.txt' into folder
'‘perlcourse2012'

B

(4

File Edit View Search Tools

R BOpen v ESave

[| *Unsaved Document 1 3¢ ‘
Test text

Documents Help

=) Undo

Plain Text ¥ Tab Width: 8 v Ln 1, Col

Name: test.txt

7 Browse for other folders

‘TH i) aviasova || pericourse2012

Places Name
3% search

@) Recently Used
& aviasova
Desktop

[File System
(@] Documents
(& Music

(3 Pictures
Videos

(&) Downloads

s |

Character Coding: ‘ Unicode (UTF-8)

Size Modified

Create Folder

All Files

v

A
v

A
v

Cancel

Save ‘

Exercise 3: Basic operations.

Check that the working directory is 'pericourse2012’
$ pwd

Get the directory content

$ Is

Copy 'test.txt’ into 'test2.txt’

$ cp test.txt test2.txt

Get content of 'test2.txt'

$ more test2.txt

Get directory content with full information
$ Is-la

Delete 'test.txt'

$ rm test.txt

What is Perl?

Perl is a programming language extensively used in
bioinformatics

Created by Larry Wall in 1987

Provides powerful text processing facilities, facilitating easy
manipulation of text files

Perl is an interpreted language (no compiling is needed)
Perl is quite portable

Programs can be written in many different ways (advantage?)
— Perl slogan is "There's more than one way to do it”

Rapid prototyping (solve a problem with fewer lines of code
than Java or C)

Installing Perl

* Perl comes by default on Linux and MacOSX
* On windows you have to install it:
http://strawberryperl.com/ (100% open source)

http://www.activestate.com/ (commercial distribution-
but freel!)

e Latest version is Perl 5.14.2
To check if Perl is working and version

Sperl —v

Perl resources

* Web sites
— www.perl.com
— http://perldoc.perl.org/
— https://www.socialtext.net/perl5/index.cgi
— http://www.perlmonks.org/

* Books

— Learning Perl (good for beginners)
— Beginning Perl for Bioinformatics
— Programming Perl (Camel book)

— Perl cookbook

Ex1. First program...

1) Open a terminal

2) Enterwhich perl

3) Open gedit and enter
#!/../path/to/perl —w
#prints Hello world in the screen
print “Hello world!\n”;

4) Saveitashello.pl

5) Execute it with
perl hello.pl

Perl basic data types

Numbers

1000 #integer

1.25 #floating-point

1.2e30 #1.2 times 10 to the 30t" power
-1

-1.2

Only important thing to remember is that you never insert
commas or spaces into numbers in Perl. So in a Perl program you
never will find:

10 000

10,000

Perl basic data types
Strings

* Astringis a collection of characters in either single or double quotes:
“This is the CRG.”
‘CRG 1s in Barcelonal’

Difference between single and double quotes is:

print “Hello!\nMy name is Ernesto\n”; #Interprete contents
Will display:

>Hello!

>My name 1s Ernesto

print ‘Hello!\nMy name is Ernesto\n’; #contents should be
taken literally

Will display:
>Hello!\nMy name is Ernesto\n

Scalar variables

 Variable is a name for a container that holds one or more
values.

e Scalar variable (contains a single number or string):
$a=1;

Scodon=“ATG" ;

$a single peptide=“GMLLKKKI";

(valid Perl identifiers are letter,words,underscore,digits)
Important! Scalar variables cannot start with a digit
Important! Uppercase and Lowercase letters are distinct (SMaria and Smaria)

Example (Assignment operator):

Scodon="ATG" ;

print “$codon codes for Methionine\n”;
Will display:

ATG codes for Methionine

Ex 2. A program to store a DNA sequence

1) Open aterminal
2) Enterwhich perl
3) Open gedit andenter
#!/../path/to/perl —w
#Storing DNA in a variable, and printing it out
#First we store the DNA in a variable called S$DNA
SDNA='ACGTGGTTAAATGTGTTGGTGTGTGG' ;
#Next, we print the DNA onto the screen
print S$SDNA;
4) Save itasdna.pl
5) Execute it with
perl dna.pl

Numerical operators

* Perl provides the typical operators. For example:

5+3 #5 plus 3, or 5

3.1-1.2 #3.1 minus 1.2, or 1.9
4*4 # 4 times 4 = 16

6/2 # 6 divided by 2, or 3

e Using variables
$a=1;

$b=2;
$c=$a+$b;
print “Sc\n”;

Will print:
3

Special numerical operators

e Sa++; #same than

Sa=Sa+1;

e Sb--; #same than

Sb=Sb-1;

e Sc +=10; #same than

Sc=Sc+10;

String manipulation

* Concatenate strings with the dot operator
“ATG"” ."TCA"” # same as “ATGTCA"
* String repetition operator (x)
“ATC” x 3 # same as “ATCATCATC”
* Length() get the length of a string

Sdna=“acgtggggtttttt”;
print “This sequence has “.length(Sdna).”
nucleotides\n”;
Will print:
This sequence has 10 nucleotides
* convert to upper case
Saa=uc($Saa);
* convert to lower case
Saa=lc(Saa);

Ex 3. Concatenating DNA fragments

1) Open a terminal
2) Enterwhich perl
3) Open gedit and enter

#!/../path/to/perl —-w

#Store two DNA fragments into two variables called SDNA1l and S$SDNA2
SDNA1="“AGGGGGTTTGCGTGTGGGCGGG";

SDNA2="GGGTGGGTGAGGTGCTGCTGCT";

#print the DNA onto the screen

print “Here are the original two DNA fragments:\n”;

print S$DNAL,”\n”;

print S$DNAZ2, ”\n”;

#Concatenate the DNA fragments into a third variable and print them
$DNA3=S$DNAI.$DNA2

print “Here is the concatenation of the first two fragments:\n”;
print $DNA3,”\n”;

4) Save it as concatenate.pl
5) Execute it with
perl concatenate.pl

Conditional statements
(if/else)

 Determine a particular course of action in the
program.

* Conditional statements make use of the
comparison operators to compare numbers or
strings. These operators always return true/
false as a result of the comparison

Comparison operators

(Numbers)

Comparison ___________[Numeric
Equal ==

Not equal I=

Less than <

Greater than >

Less than or equal to <=
Greater than or equal to >=
Examples:

35==35#true

35 1=35 # false

351=32 #7777

35==32+3 # ??7??

Comparison operators
(Strings)

Comparison Numeric

Equal €q
Not equal ne
Less than It

Greater than gt
Less than or equal to le
Greater than or equal to ge
Examples:

‘hello’ eq ‘hello’ # true
‘hello’ ne ‘bye’ # true
‘35" eq ‘35.0" # ??7?7?

If /else statement

* Allows to control the execution of the program
Example:
Sa=4;
$b=10;
if (Sa>$b) {
print “$a is greater than $b\n”;
} else {
print “$b is greater then $a\n”;

}

Ex 4.

a) Open gedit, write the code above and save it with the name compare.pl. Finally
execute it. What do you obtain?

b) Change the variables values to Sa=6 and Sb=3 and rerun compare.pl. What do you
obtain?

c) Change the variables values to Sa=3 and $Sb=3 and rerun compare.pl. What do you
obtain?

elsif clause

* To check a number of conditional expressions,
one after another to see which one is true

 Game of rolling a dice. Player wins if it gets an even number

Soutcome=6; #enter here the result from rolling a dice
if (Soutcome==6) {
print “Congrats! You win!\n”;
} elsif (Soutcome==4) {
print “Congrats! You win!\n”;
} elsif (Soutcome==2) {
print “Congrats! You win!\n";
} else {
print “Sorry, try again!\n”;

}

Ex5. Correct compare.pl from Ex4. to cope with equal values for Sa and $Sb

Answer

Ex 5. Correct compare.pl from Ex4. to cope
with equal values for $a and $b
compare.pl
$a=4;
Sb=10;
if (Sa>Sb) {

print “$a is greater than Sb
\n";
} elsif ($Sa<$b) {

print “$b is greater then $a
\n";
} else {

print “S$b is equal to S$a\n”;
}

Logical operators

* Used to combine conditional expressions
* | (OR)

15t expression 2"d expression Combined
outcome outcome outcome

TRUE FALSE TRUE
FALSE TRUE TRUE
TRUE TRUE TRUE

FALSE FALSE FALSE

Logical operators

Example:
Sday="“Saturday”;
if ($day eq “Saturday” || $day eq “Sunday”)
{
print “Hooray! It’s weekend!\n”;
}
Will print:

>Hooray! It’s weekend!

Logical operators

o & & (AN D) 1st expression | 2"d expression | Combined
outcome outcome outcome

TRUE FALSE FALSE
FALSE TRUE FALSE
TRUE TRUE TRUE
FALSE FALSE FALSE
Example:
Shour=12;

if (S$hour >=9 && Shour <=18) ({
“You are supposed to be at work!\n”;

}

Will print:
>You are supposed to be at work!

Boolean values

* Perl| does not have the Boolean data type. So how
Per| knows if a given variable is true or false?

e |f the value is a number then 0 means false; all
other numbers mean true

* Example:
Sa=15;
$is bigger=$a>10; # $is bigger will be 1

if ($is bigger) {...}; # this block will be
executed

Boolean values

e |f a certain value is a string. Then the empty

string () means false; all other strings mean

true
Sday=u n ;

#evaluates to false, so this block will not be
executed

if(sday) {
print $Sday contains a string

Boolean values

* Get the opposite of a boolean value (! Operator)

Example (A program that expects a filename from the user):

print “Enter file name, please\n”;

Sfile=<>;

chomp($file); #remove \n from input

if (!Sfile) { #if S$file is false (empty string)
print “I need an input file to proceed\n”;

}
#try to process the file

die() function

* Raises an exception, which means that throws an
error message and stops the execution of the
program.

* So previous example revisited:

print “Enter file name, please\n”;

Sfile=<>;

chomp($file); #remove \n from input

if (!Sfile) { #if $file is false (empty string)
die(“I need an input file to proceed\n”);

}
#process the file only if $file is defined

Ex 6. Using conditional expressions

e TODO: Write a program to get an exam score from the
keyboard and prints out a message to the student.

Score ___ |Message

Greater than or equal to 90 Excellent Performance!

Greater than or equal to 70 Good Performance!
and less than 90

Greater than or equal to 50 Uuff! That was close!
and less than 70

Less than 50 Sorry, try harder!

Hint: To read input from keyboard enter in your program

print "Enter the score of a student: ";
$score = <>;

Solution

#! /usr/bin/perl
print "Enter the score of a student: ";
Sscore = <>;
1f($score>=90) {
print "Excellent Performance!\n";
} elsif (Sscore>=70 && Sscore<90) {
print "Good Performance!\n”;
} elsif (Sscore>=50 && Sscore<70) {
print "Uuff! That was close!\n”;
} else {
print "Sorry, try harder!\n";

Introduction to Perl programming
Session |l

Overview

* Loops
* Arrays
e Reading/Writing files

Statements and Blocks

* Programs are composed of statements often grouped
together into blocks

* A statement ends with a semicolon (;), which is optional
for the last statement in a block

* Ablock is one or more statements usually surrounded by
curly braces:

Sthousand = 1000;
print Sthousand;

Loops

* Aloop allows you to repeatedly execute a block of
statements

* There are several ways to loop in Perl:
— while (CONDITION) {BLOCK}
— do {BLOCK} while (CONDITION) more frequently seen
— until (CONDITION) {BLOCK}
— do {BLOCK} until (CONDITION) /
— for (INITIALIZATION; CONDITION; RE-INITIALIZATION) {BLOCK})

— for VAR (LIST) {BLOCK})
— foreach VAR (LIST) {BLOCK})

these work on the arrays, we'll see later!!

while (CONDITION) {BLOCK}

While Loop

* The while loop first tests the condition:
— if true, it executes the block and then returns to the conditional to
repeat the process
— if false, it does nothing, and the loop is over

 Example:
Si=1;
while ($i <= 1000) { ?
print "Si\n";
Sit++;
} IMP: do not forget to increment the

variable

* FormatA

Code Layout
* FormatC
while (i) {

6 while (Si)
if (Si) {

{
print "Si\n"; x

/ (
i print "Si\n";

* Formgt
wh%f(Si){print "Si\n";}}

* FormatB

while (Si)
{
if (Si)
{
print "Si\n";
}

do {BLOCK} while (CONDITION)
Do-while Loop

* Inthe do-while loop, the block is executed before the
conditional test, and the test succeeds while the condition
IS true

* Example:

Si =1000;
do {
print "Si\n";
Si--;
} while (Si);

until (CONDITION) {BLOCK}

Until Loop

Until loop is used to loop through a designated block of
code until a specific condition is met (evaluated as true)

It is the logical opposite of the while loop
Example:

Si=3;

until (Si) {
print "Si\n";
Si--;

do {BLOCK}) until (CONDITION)
Do-Until Loop

* Inthe do-until loop, the block is executed before the
conditional test, and the test succeeds until the condition
IS true

* Example:

Si=3;

do {
print "Si\n";
Si--;

}until (Si);

for (INITIALIZATION; CONDITION; RE-INITIALIZATION) {BLOCK}

For Loops

* The for loop makes it easy by including the variable
initialization and the variable change in the loop
statement

 Example:

for ($i = 1; Si <= 1000; Si++) {
print "Si\n";

Moving around in a Loop

* next
— ignore the current iteration

e J|ast
— terminates the loop

 What is the output for the following code snippet?

for (Si=0; Si< 20; Si++) {
if (Si==1]| Si==5){next;}
elsif (Si ==7) { last; }
else {print "Si\n";}

Answer

o H~ W N O

Exercise

* Use a while loop to print the integer values from 1 to 10
on the screen:

12345678910

while (CONDITION) {BLOCK}

Answer

#!/path/to/perl -w

Si=1;

while ($1 <= 10) {
print $i;
Si++;

Exercise

e Use a while loop to reproduce the following output:

22
333
4444
55555

TIP: you need to use a nested loop

#!/path/to/perl -w

Si=1;
while (Si <= 5) {
Sj=1;
while (Sj <= Si) {
print Si;
Sj++;
}
print "\n";
Si++;

Answer

Exercise

 Count the frequency of base G in the following DNA
sequence:

GATTAGCAGGGCAGT

TIP: you need to use a while loop for the length of the string, extract each base with
substr, and use an if to check if the base is a G

substr EXPR,OFFSET,LENGTH

Examples:

my $dna=“AAAATGG”;

my $letterl=substr($dna,l,1);
print "$letterl\n";

>A

my Sletter2=substr (Sdna,2,4);
print "S$letter2\n";

>AATG

Answer

#!/path/to/perl -w
SDNA = "GATTAGCAGGGCAGT";

ScountG = 0; # initialize ScountG and ScurrentPos
ScurrentPos = 0;

SDNAlength = length(SDNA); # calculate the length of SDNA

while (ScurrentPos < SDNAlength) {
Sbase = substr(SDNA,ScurrentPos,1);
if (Sbase eq "G") { # for each letter in the sequence check if it is the base G
ScountG++; # if 'yes' increment ScountG

}

ScurrentPos++;
} # end of while loop

print "There are ScountG G bases\n"; # print out the number of Gs

Arrays

Arrays

* Arrays are ordered lists of scalars

* Array variable is denoted by the @ symbol
@bases — (IIAII) IICH’ llGIl)llTll);

* To access the whole array:
print @bases; # prints:ACGT

Notice that you do not need to loop through the
whole array to print it — Perl does this for you

Arrays

* Arrayindexes startat O
e To access one element of the

cont.

array: use S

— Why? Because every element in the array is a scalar

@molecules = ('DNA','RNA’,'Protein’);
print "Here are the array elements:";
print "\nFirst element: ";

print Smolecules[0];

print "\nSecond element: ";

print Smolecules[1];

print "\nThird element: ";

print Smolecules[2];

2

Protein

Positions: 0 1
Scalar values: DNA RNA

Schematic view of the array @molecules

Output

First element: DNA
Second element: RNA
Third element: Protein

Arrays cont.

* To find the index of the last element in the array

print S#bases; #prints 3 in the previous example

* Other ways to find the number of elements in the array
are:

Sarray_size = @bases; or Sarray_size = scalar(@bases);

Note: in our example, Sarray_size is 4 because there are 4 elements in the array @bases

Example: Numerical Sorting

#!/path/to/perl -w

@unsortedArray = (16, 12, 20, 10, 1, 77);
@sortedArray = sort {Sa <=> Sb} @unsortedArray;

print "@unsortedArray\n"; # prints 16 12 20 10 1 77
print "@sortedArray\n"; # prints 11012 16 20 77

Sorting Arrays

Perl has a built in function to sort:
— In alphabetical order (default) with uppercase first

@sortedArray = sort @unsortedArray;
[equivalent to @sortedArray = sort {Sa cmp Sb} @unsortedArray;]

— In a reverse alphabetical order
@sortedArray = sort {Sb cmp Sa} @unsortedArray;

— Numerically in ascending order
@sortedArray = sort {Sa <=> Sb} @unsortedArray;

— Numerically in descending order
@sortedArray = sort {Sb <=> Sa} @unsortedArray;

Example: String Sorting
#!/path/to/perl -w

@unsortedArray = ("UAA", "UGA", "UAG");
@sortedArray = sort {Sa cmp Sb} @unsortedArray;

print "@unsortedArray\n"; # prints UAA UGA UAG
print "@sortedArray\n"; # prints UAA UAG UGA

Reversing an Array

* The reverse function reverses the order of the
elements stored in an array:

@array = reverse (@array);

* Example:

@bases - (IIAII, IICH’ IIGII’IITH)’_
orint @bases; #prints:ACGT

@bases = reverse (@bases);
orint @bases; #prints: TGCA

Example: playing a bit with your
names

#!/path/to/perl -w

@names = ("elisa", "Laura", "angela", "astrid", "Maria", "andreas", "Federico",
"Susana","Alessandro");

print "1-names: @names\n\n";

@names = reverse(@names);
print "2-reversed: @names\n\n";

@names = sort (@names);
print "3-sorted: @names\n\n";

@names = sort {Sb cmp Sa} @names;
print "4-sorted desc: @names\n\n";

Output:

1-names: elisa Laura angela astrid Maria andreas Federico Susana
Alessandro

2-reversed: Alessandro Susana Federico andreas Maria astrid angela Laura
elisa

3-sorted: Alessandro Federico Laura Maria Susana andreas angela astrid
elisa

4-sorted desc: elisa astrid angela andreas Susana Maria Laura Federico
Alessandro

foreach VAR (LIST) {BLOCK})
Foreach

* Foreach allows you to iterate over an array

 Example:
foreach Selement (@array) {
print "Selement\n";

}

e This is similar to:
for (Si = 0; Si <= S#array; Si++) {
print "Sarray[Si]\n";
}

Sorting with Foreach

The sort function sorts the array and returns the list in
sorted order

Example:

@family = ("father","mother","son","daughter");

foreach Selement (sort @family) {
print "Selement ";

}

Prints the elements in sorted order:
daughter father mother son

for VAR (LIST) {BLOCK})

For Loop - on the arrays

The for loop allows you to iterate also the arrays

Example:

@family = ("father","mother","son","daughter");

for Selement (sort @family) {

print "Selement ";

}

Manipulating Arrays

String to Array: split

e Split a string into words and put into an array
@bases = split(";", "A;C;G;T");

#creates the same array as we saw previously @bases = ("A", "C",
IIGII’ IlTll);

e Split into characters
@bases = split("", "ACGT");

array @bases has 4 elements: A, C, G, T

— NB: Split functions can be also used to prepare a list:
(Sfirst,Ssecond,Sthird,Sfourth) = split(";", "A;C;G;T");

Array to String: join

* Array of characters to string:
@aa — (IIIVIII’ IINH’ IIIII’ ”D”'”K”,”L“);
Spep_fragment = join("", @aa);

pep_fragment = "MNIDKL"

* Array to space separated string:
@array = ("one", "two", "three");
Sstring = join(" ", @array);

string = "one two three"

More examples...

* Join with any character you want:

@array — (IID”’ ||V||’ |||Op , r)’.
Sstring = join("e", @array);

string = "Developer"

* Join with multiple characters:
@array - (Illll' II2||’ l|3l|' II4II’ ll5|l)'_
Sstring = join("->", @array);

string ="1->2->3->4->5"

Add/remove elements
(at the end of the array)

* To append to the end of an array:
@bases = ("A", "C", "G");
push (@bases, "T");
print @bases; # printsACGT

* To remove the last element of the array:
@bases = ("A", "C", "G", "T");
Sbase = pop (@bases);
print Sbase; # prints "T"
print @bases; # printsACG

Add/remove elements
(at the beginning of the array)

* To add an element to the beginning of an array:
@bases — (”A”’ ||CII’ IITII);
unshift (@array, "G");
print @bases; # prints GACT

* To remove the first element of the array:
Sbase = shift @bases;
print Sbase; # prints "G"
print @bases; # prints ACT

Reading/Writing Files

File Handlers

* Opening a File:
open (FH, "file.txt");

* Reading from a File

Sline = <FH>; # reads up to a newline character

* Closing a File
close (FH);

File Handlers

* Program to read the whole file content:

#!/path/to/perl -w
open (FH, "file.txt");
while (Sline = <FH>) {

print Sline."\n";
}

close (FH);

Exercise: Write a program to print out a file

1) Download ENSG00000139618.fasta from

http://nin.crg.es/perlCourse2012/
ENSG00000139618.fasta

2) Write a program called readfile.pl to print out the sequence of
ENSG00000139618

3) Run readfile.pl (will print outputinto the screen [STDOUT]
4) Finally, type in the terminal (redirection usage):
perl readfile.pl > ouputname.txt

Solution

#!/path/to/perl -w
open (FH, "ENSG00000139618. fasta");
while (Sline = <FH>) {

print Sline."\n";

close (FH);

File Handlers cont.

Opening a file for output:
open (FH, ">file.txt");
Opening a file for appending:
open (FH, ">>file.txt");
Exiting if opening a non-existing file:
open (FH, ">file.txt") | | die "Could not open file.\n";
Writing to a file:
print FH "Printing my first line.\n";

File Test Operators

e Another check to see if a file exists:
if (-e "file.txt") {
The file exists!

}
e Other file test operators:
-r readable
-X executable
-d is a directory

-T is a text file

A program with File Handles

* Program to copy a file to a destination file:
#!/usr/bin/perl -w

open(FH1, "file.txt") | | die "Could not open source file.\n";
open(FH2, ">newfile.txt");

while (Sline = <FH1>) {
print FH2 Sline;
}

close FH1;
close FH2;

Some Default File Handles

e STDIN : Standard Input
Sline = <STDIN>; # takes input from stdin

 STDOUT : Standard output
print STDOUT ”“This prints out something\n";

e STDERR : Standard Error
print STDERR "Error!!\n";

Chomp and Chop

 Chomp: function that deletes a trailing newline
from the end of a string
Sline = "this is the first line of text\n";
chomp Sline; # removes the new line character

print Sline; # prints "this is the first line of
text" without returning

* Chop: function that chops off the last character of

a string
Sline = "this is the first line of text";
chop Sline;

print Sline; #prints "this is the first line of tex"

Exercise

Download the file human_genes.txt containing the

coordinates of all the human genes (take a look at it)

Write a program to print all the genes longer than 1Mb

(1000000 bp)

. Steps:
1. Download file from nttp://nin.crg.es/pericourse2012/human_genes. txt
1. Read all the lines of file human_genes.txt, and skip the header
2. Compute the gene length and assess whether the gene is longer
than 1Mb
3. Ifyes, print the gene name and the length

Answer

#!/usr/bin/perl -w

open(FH, “/path_to_the_file/human_genes.txt") | | die "Could not open source file.\n";

Si=0;
while (Sline = <FH>) {
if (Si==0) {
Si++;
next;
}

(Sgene_name,Sensembl_id,Schr,Sgene_start,Sgene_end,Sgene_strand,Sgene_band,Stranscript_num,
Sgene_biotype,Sgene_status)= split("\t", Sline);

Sgene_length = (Sgene_end - Sgene_start) + 1;

if (Sgene_length > 1000000) {
print "Gene Sensembl_id (Sgene_name) has length Sgene_length\n";

close FH;

Exercise

* Using the same file human_genes.txt

e Write a program to print the number of genes with more
than 20 transcripts

. Steps:
1. Read all the lines of file human_genes.txt, and skip the header

2. Increment a variable Sgene_count if the gene has more than 20
transcript

3. Print the count

Answer

#!/usr/bin/perl -w
open(FH, “/path_to_the_file/human_genes.txt") | | die "Could not open source file.\n";
$i=0;

Sgene_count =0;

while (Sline = <FH>) {

if (Si==0) {
Si++;
next;
}

@columns = split("\t", Sline);
Stranscript_num = Scolumns[7];

if (Stranscript_num > 20) {
Sgene_count++;

}
}

print "Sgene_count genes have more than 20 transcripts\n";

close FH;

Exercise

. Write a program named count nucleotidesl.pl to determine the
frequency of nucleotides in a DNA sequence provided by file

. Steps:
1)Download file sequence. txt by typing:

http://nin.crg.es/perlCourse?2012/sequence.txt

2)Read in DNA from sequence. txt

3)Remove white spaces in the sequence and then creates an arrays of nucleotides

4)Look at each base in a loop to count the different nucleotides

Adapted from example 5-4 of the book “Beginning Perl for Bioinformatics”, J. Tisdall

Example Program

Step 1- Read DNA from sequence. txt:
#!/path/to/perl -w
open (FH, Sfile) | | die "Could not open file.\n";

@DNA = <FH>;
print "working on DNA:\n@DNA\n";

close (FH);

Example Program cont.

Step 2- Remove white spaces in the sequence and then creates an
arrays of nucleotides

SDNA = join(", @DNA); # put the DNA sequence into a string

This is a regular expression! We’ll talk
about this next time!!

SDNA =~ s/\s//g; # remove whitespace
@DNA = split("', SDNA); # create an array of nucleotides

print "now DNA is:\n@DNA\n";

Example Program cont.

Step 3- Look at each base in a loop to count the different nucleotides

(SA,$C,5G,ST) =(0,0,0,0);
foreach Sbase (@DNA) {
if (Sbase eq ‘A’) {
SA++;
} elsif (Sbase eq ‘'C’) {
SC++;
} elsif (Sbase eq ‘G’) {
SG++;
} elsif (Sbase eq ‘T’) {
ST++;
}else {
print “Error - | do not recognize this base: Sbase\n”;

}
}
print “A = SA\tC = SC\tG = SG\tT = ST\n\n";

Introduction to Perl programming
Session Il

REGULAR EXPRESSIONS

REGEX

* Fast, flexible and reliable method to look for patterns in
strings

* Strong support in Perl

* Also in other programming languages and in

awk,sed,emacs...

What is a REGEX?

* A pattern/template that match/not match a given string

* Almost always used in a conditional that returns True/False

Ex.
Sdna="'AAAAATGAAAAA';

if ($dna /ATG/) |

Binding operator
print “it matched!\n”;

}

>it matched!
>

What is a REGEX?

Ex.
Sdna="ATGAAAATGAAAALAA" ;

if ($dna =~ /ATG/) {

print “it matched!\n”;

>1t matched!
>

What is a REGEX?

e \t or \n also can be matched in REGEX

Ex.
Snames="peter\tmaria”;

if (Snames =~ /peter\tmaria/)

{

print “$Snames\n”;

>peter maria
>

EXERCISE

e Download textdemo.txt from:

http://nin.crg.es/perlCourse2012/textdemo. txt

* Write a Perl script that read this file line per line and only

prints out the lines that contain the word Darwin

ANSWER

Sfile="textdemo.txt";
open FH,”$file"; #open filehandle

while (Sline=<FH>) {
chomp (S1line) ;
fregex
if ($line=~/Darwin/) {
print "S$Sline\n";

close FH; #close filehandle

Metacharacter
(dot operator)

* Allow to use a simple pattern to match more than one string

* the dot (.) matches any single character except “\n”

Ex.
Sname="betty”;
if (Snames =~ /bet.y/) {

print “it matched!\n”;

It will not match: It will match:
betsey betfy
betseey bet=y

bet-vy

Simple quantifiers

* When one needs to repeat something in the pattern
e * (asterisk) means match preceding item 0 or more
times

* + (plus) means match preceding item 1 or more times

if (Sname=~/frey\t*barney/) {
print “it matched!\n”;

}

Sname="fred\tbarney”;
Sname="fred\t\tbarney”;
Sname=“fred\t\t\tbarney\tand\tjohn”;
Sname="“fredbarney”;

Simple quantifiers

if (Sname=~/frey\t+barney/) {
print “it matched!\n”;

}

v

+ matches 1 or more times

Sname=“fredbarney”;
PEPRPRPRPRPRPES

Simple quantifiers

Match exactly at least n times with { }

Ex:

$dna string="TTTTAAAAAA”; #has this string at
least five As?

if ($dna string=~/A{5}/) {
print “this string has at least five As\n”;

}

Grouping things in REGEX

* Parentheses (()) are used for this
Ex:
/fred+/ will match fredddddddd

/(fred)+/ will match fredfred or fred
or and so on but will not match
freafrea

Character classes

 List of possible characters inside brackets ([])

* Important: It matches only a single character but this can
be any of the characters
within brackets

Sa=2;
if (Sa=~/[0123456789]1/) {
print “Scalar variable is a digit!\n”;

 Same example but with less typing:
Sa=2;
if (Sa=~/[0-91/) {

print “Scalar variable is a digit!\n”;

Character classes

* Some character classes appear so frequently that have shortcuts

[0-9] \d
[A-Za-z0-9] \w
[\At\N\r] \s

Character classes

* All character classes can be negated using the caret (*) symbol or using the
corresponding capital letter

["0-9] [M\d] \D
[*A-Za-20-9] [Mw] \W
[MAEN\] [M\s] \S
$ a="a" ;

if (Sa=~/\D/) {
print "It is not a digit!\n";

Will print:
>It 1s not a digit!
>

Anchors

* Allow to match a pattern but only at the beginning or end of a string
e Caret (*) symbol match a pattern at the beginning of the string

* Dollar (S) symbol match a pattern at the end of the string

$string="fred is 23 years old”;
if (S$string=~/"fred/) {

print “we are talking about fred!\n”;

}

Will print:

>we are talking about fred!
>

Anchors

$Sstring="1is fred 23 years old”;

if ($string=~/"fred/)
print “we are talking about fred!\n”;

}

Will not match!

Anchors

e Match at the end of the string with S

Sstring="they are 37;

if (Sstring=~/\dS$/) {
print “\$string ends in a number\n”;

}

>$string ends in a number
>

Anchors

$Sstring="3 they are”;

if (Sstring=~/\dS$/) {
print “\S$Sstring ends in a number\n”;

J

Will not match!

EXERCISE

 Download demo.fasta (multifasta file with DNA sequences) by typing:
http://nin.crg.es/perlCourse2012/demo.fasta

* Write a Perl script to parse demo.fasta and print out the lines that contain the IDs

for the different sequences

Tip. Remember that the Fasta format has always the following format:

>seql
ACGTGGGTGTGATG

ANSWER

Sfile="demo.fasta";
open FH,”Sfile";

while (S1line=<FH>) {
chomp ($1ine);
#match only lines starting with >
if ($line=~/">/) {
print "S$line\n";

close FH;

Extracting the matches

* Parentheses () allow to recover the parts of a string that
matched

* Matches will be kept in special variables called $1, $2, etc

* For example:

Sa="Hello there, neighbor”;

if (Sa=~/\s (\w+),/) {

print “the word was $1\n”;

}
Will print:
>there

>

Extracting the matches

Sa="Hello there, neighbor”;

1f (Sa=~/(\w+) (\wt), (\w+t)/) |
print “words were $1 $2 $3\n”;

J

Will print:

>words were Hello there neighbor
>

EXERCISE

* Download demo.fasta (multifasta file with DNA sequences) by typing:

http://nin.crg.es/pverlCourse2012/demo.fasta

* Write a Perl script to parse demo.fasta and print out the part of the ID that
differentiates one sequence from the other. For example:

>seql

>seq?2

>seq3

Our script will print:
1
2
3

Tip. Remember that the Fasta format has always the following format:

>seql
ACGTGGGTGTGATG

ANSWER

Sfile="demo.fasta";

open FH,”Sfile";
while (S1line=<FH>) {

chomp ($1line) ;
fcapture the digits after

#the word seq
if ($Sline=~/">seq(\d+)/) {
print "$1\n";

}

close FH;

Processing text with REGEX

» So far REGEX were used to check if a given string has a given
pattern inside, but we did not modify the original string

e Substitution operator:

$string="Homer Simpson”;
Sstring=~s/Homer/Bart/;
print “Now we have $string\n”;

Will print:

>Now we have Bart Simpson
>

Processing text with REGEX

* Substituting globally

Example (Removing extra tabspaces in a string):

$string="Hello, \tI am attending\t\t a Perl course\n”;
print $string; #print $string before removing
tabspaces

Sstring=s/\t+/ /g;
print $string; #print $string after removing
tabspaces

Will print:

>Hello, I am attending a
Perl course

>Hello, I am attending a Perl
course

EXERCISE

1. Open gedit and create afile called substituteTs.pl

2. Create a variable called Sseg containing the following sequence:
AACCCLtttGGGTTTTTGTCGTAGAAAAAAAA

3. Subsitute all Tsortsin Sseqg by Us

4. Print the contents of $Sseqg

5. Execute substituteTs.pl

ANSWER

Ssegq="“"AACCCttttGGGTTTTTGTCGTAGAAAAAAAA" ;
Sseg=~ s/Tt/U/g;

print $seq,”\n”;

Processing text with REGEX

e Transliterator operator

tr/SEARCHLIST/REPLACEMENTLIST/

e Definition:
it replaces all occurrences of the characters in SEARCHLIST with
the characters in REPLACEMENTLIST

e Examplel:
$string = 'the cat sat on the mat.';
S$string =~ tr/a/o/;

print "$string\n";

Will print:

>the cot sot on the mot.
>

Processing text with REGEX

* Transliterator operator
 Example Il:
$string = 'the cat sat on the mat.';

Sstring =~ tr/at/ol/;

print "S$string\n";

Will print:

>lhe col sol on |he mol
>

Exercise

* Calculate the reverse complementary of a DNA sequence using the tr/// operator
* Answer:

#!/usr/bin/perl

$dna="ACGGTTGGAAAACGTTTGCGCGCGCGATGGCCCCGAACG";
print "the original sequence is:\nSdna\n";

freverse string
Srevcom=reverse Sdna;
print "Reversed sequence is:\nSrevcom\n";

#fcalculate the complementary for each nucleotide
Srevcom=~tr/ACGT/TGCA/;
print "Reverse complement is:\n$revcom\n";

Introduction to Perl programming
Session |V

HASHES

- Very Useful

Make Perl a very powerful language

But... what is a Hash?

Is another data structure (like arrays) that holds any number
(a collection) of values

Unlike the arrays (where the values are indexed by numbers)

In hashes we'll look up the data by name

HASHES

We access the data through the association between a key and a value
Keys are arbitrary strings
They are unique (cannot exist the same key associated to different values)

Values can be numbers,strings,undef values

VALUES

—— ufoon —] 35
“bar” 124
k£ n n
u 2.5 hello
“wilma” 1.72e30
Ilbettyll " bye\n”

Extracted from Learning Perl (Tom Phoenix, Randal L. Schwartz)

KEYS

HASHES vs ARRAYS

- Keys are unordered (so we can look up any item quickly)

- Indices of an array are ordered

VALUES

“foo" —#- 35
“bar” 124 vl
o
—a
=
2.5" “hello” S
-—
—_—
“wilma” — 172630 =
-
-
=
anyN N »bw\nv

(INDICES)

= W N - O

VALUES

35

12.4
“hello”

1.72e30
ubye\nn

Extracted from Learning Perl (Tom Phoenix, Randal L. Schwartz)

CREATING A HASH

$cities = (

AN} 174 \
////zggﬁe” => “Italy”,

\\Londonll => \\UKII,

KEYS “Paris” => “France”, VALUES

“New York” => “United States”,

“Lisbon” => “Portugal”
) ;

CREATING A HASH

Which is the same than (less visually clear):

my scilties= (“Rome” => “Italy”,“London” =>
“UK”, “Paris” => “France”,“New York” => “United
States”, “Lisbon” => “Portugal”);

HASH ELEMENT ACCESS

Syntax is:
Shash{$some key}

Similar to arrays were we had (square brackets instead of
curly brackets)

Sarray[0]

Example:
print Scities{“Paris”},”\n”;
Will print:

>France

ADD DATA INTO THE HASH

Syntax is:
#add new key-value pair into %cities

Scities{“Madrid”}="Spain”;

Now %cities will be:
scities= (
“Rome” => “Italy”,
“London” => “UK”,
“Paris” => “France”,
“New York” => “United States”,
“Lisbon” => “Portugal”,
“Madrid” => “Spain”

HASH FUNCTIONS

KEYS FUNCTION

- Returns an array with all the keys in the hash

Example I:
my (@certain cities=keys %cities;

foreach S$this city (@certain cities)
print S$this city,”\n”;
}

Will print:

>Paris

>Madrid

sLondon Unsorted
>T.isbon

>Rome

>New York

HASH FUNCTIONS

KEYS FUNCTION

Example Il:
my @certain cities=sort keys %Scitiles;

foreach S$this city (@certain cities)
print $this city,”\n”;
}

Will print:

>TL.isbon

>London Sorted
>Madrid

>New York

>Paris

>Rome

HASH FUNCTIONS

KEYS FUNCTION

Example llI:
Same than previous example but less typing:
foreach $this city (sort keys 3%cities) {

print Sthis city,”\n”;

HASH FUNCTIONS

VALUES FUNCTION

Returns an array with all the values in the hash

Example I:

@certain countries=values %cities;

foreach $this country (Q@certain countries) {
print $this country, ”\n”;

}

Will print:

>France

>UK

>Portugal Unsorted
>Spain

>ltaly

>United States

HASH FUNCTIONS

VALUES FUNCTION

- Returns an array with all the values in the hash

Example Il:

my @certain countries=sort values %citiles;

foreach S$this country (@certain countries) {
print S$this country,”\n”;

}

Will print:
>France
>Italy

>Portugal Sorted
>Spaln

>UK

>United States

EXERCISE

1) Create a hash called %names with the following pairs
(First Name/Last Name):

James Taylor
Elisabeth Bacon
Helen Smith
Henry Logan

2) Use a foreach to print all values in the screen with not particular
order

3) Use a foreach to print all values, but this time print the values
sorted alphabetically

ANSWER

#!/usr/bin/perl -w

#create hash

Tnames= (
"James"=>"Taylor",
"Elisabeth"=>"Bacon",
"Helen"=>"Smith",
"Henry"=>"Logan"

) ;

print "Unsorted:\n";

#print each value in the screen unordered
foreach $last name (values

snames) {
print "$last name\n";

}

print "\nSorted:\n";

#fprint each value in the screen sorted alphabetically
foreach $last_name (sort wvalues

snames) {
print "$last name\n";

}

HASH FUNCTIONS

EACH FUNCTION
To iterate over an entire hash (or examine each element of a hash)
Returns a key-value pair as a two element list

It has to be used in a while loop

Example:

while (da=each %cities) {
Skey=Sal0];
Svalue=S$al[l];
print “Skey\tSvalue\n”;
}

Will print:

>Paris France

>London UK

>Lisbon Portugal
>Barcelona Spaln

>New York United States

HASH FUNCTIONS

EACH FUNCTION
The same but with less typing

while ((Skey, Svalue)=each %cities) {
print “S$key\tSvalue\n";
}

EXERCISE

Use a hash to remove duplicated entries

1) http://nin.crg.es/perlCourse2012/human data.txt

This files contain 2 tab separated columns

(1%t column=gene_name; 2" column=ensembl ID)

2) Open human data.txt and check if there are duplicated entries

3) Create a program called remove duplicates.pl containing a hash called
%hash for which:

key=1°%t column or gene_name

value=2"? column or ensembl ID

Print the entire hash using the each function

Hint. Each line in the file must be split into the 2 columns using the tab separator (using
the split function) and added into the hash.

4) Execute remove duplicates.pl and redirect the output into a file called
human data nodupl.txt

5) Check that all the duplicated entries were removed

ANSWER

#!/usr/bin/perl -w

$hash; #declare the hash

open (FH, "human data.txt"™) || die "Could not open file.\n";

while (S1line=<FH>) {

chomp ($1line) ;
(Sgeneld, SensId)=split/\t/,S$line;

Sgeneld=key and SensId=value
Shash{$genelId}=$ensId;

}
close FH;

print non duplicated key/value pairs
while ((Skey, Svalue)=each %hash) {
print "S$key\tSvalue\n";

}

HASH FUNCTIONS

EXISTS FUNCTION
To see whether a key exists in the hash

Returns a true value if the given key exists in the hash
Example:

#initialize %ages

my %ages= (
"fred"=>10,
"henry"=>35,
"peter"=>40,
) ;

#check 1f “fred” exists in %ages
if (exists(Sages{"fred"})) {

print "fred key EXISTS in this hash\n";
} else {

print "fred does NOT EXIST in this hash\n";
}

EXERCISE

Use a hash to remove duplicated entries

1) Download human data. txt from the web by typing:

http://nin.crg.es/perlCourse2012/human data.txt

This files contain 2 tab separated columns

(15t column=gene_name; 2" column=ensembl ID)

2) Create a hash called $hash for which:

key=1%t column or gene_name

value=2"? column or ensembl ID

Hint. Each line in the file must be split into the 2 columns using the tab separator (using the split function) and added into
the hash.

Important. You have to check with the exists function if there is a gene name associated to 2 different ensembl Ids. If this
is the case then stop the execution of the program with die()

For example:

ZNF684 ENSG00000117010

ZNF684 ENSGO00000117015

3) print the entire hash using the each function

ANSWER

#!/usr/bin/perl -w
%$hash; #declare the hash
open (FH, "human data.txt") || die "Could not open file.\n";

while ($S1line=<FH>) {
chomp ($1ine) ;
($Sgeneld, $SensId)=split/\t/,S$line;
#check if this Sgeneld already exists in %hash
if (exists(Shash{SgenelId})) {
Sens=Shash{SgenelId};
if (Sens ne $ensId) {
die("Inconsistency!. This gene S$geneld has 2 different ens IDs: S$ensId
and Sens\n");
}

} else {
#store $geneld/SensId in the hash
Shash{SgenelId}=SensId;

}
close FH;

print non duplicated key/value pairs

while ((Skey, Svalue)=each %hash) {
print "Skey\tS$value\n";

}

HASH FUNCTIONS

DELETE FUNCTION

Removes the given key (and its corresponding value)
from the hash

Example:
#initialize %phone numbers

my %sphone numbers= (
"carol"=>687653720,
"susan"=>66078665,
"ramon"=>67898674,

) ;

#delete “carol”=>687653720 pair
delete (Sphone numbers{“carol”}) ;

HASH FUNCTIONS

DELETE FUNCTION

Check if the key/value pair was removed

foreach Skey (keys %phone numbers) {

print "Skey\tSphone numbers{Skey}\n";
}

Will print:

>ramon 6/898674
>susan 60660078665

EXERCISE

Write a second version of count nucleotides.pl called
count nucleotidesZ.pl to determine the
frequency of nucleotides in a DNA sequence but using

a hash this time

Steps:
1) Download file sequence. txt by typing:

http://nin.crg.es/perlCourse20l2/sequence.txt

2) Read in the sequence from the file using a while loop
3) split the sequence into its nucleotides using split

4) print all counts with the each function

ANSWER

#!/usr/local/bin/perl -w
open (FH, "sequence.txt") || die "Could not open file.\n";

while (Sline=<FH>) {
chomp ($1line);
@DNA=split ('',S$line) ;
foreach $nt (@DNA) {
Scounts{snt}++;
}
}

close FH;

while ((Snt, Scount)=each %counts) {
print "Snt\tScount\n";
}

SORT A HASH BY VALUES

. It is slightly trickier than sorting by keys

Example:

#hash with number of occurrences of the different words in a text
$hash=(

“the”=>20,

“a”=>10,

“house”=>2,

“car”=>3,

“red”=>4

print “Unsorted hash:\n”;

while ((Sword, Scount)=each %hash) {
print “Sword\tScount\n”;

}

#do the sorting
@sorted count=sort {Shash{Sb}<=>Shash{Sa}} keys S%Shash;

print “Sorted by values:\n”;
foreach Sword (@sorted count) {
print “Sword\t$hash{Sword}\n”;

}

SORT A HASH BY VALUES

Will print:

Unsorted hash:
house 2
the 20

a 10

red 4

car 3

Sorted by values:
house 2
car 3

red 4

a 10

the 20

EXERCISE

Sort a hash by Values

1) Download positions. txt (ensembl genes/starting positions) from the web:

http://nin.crg.es/perlCourse2012/positions.txt

This files contain 2 tab separated columns

(1%t column=Ensembl ID; 2"¥ column=positions in chromosome 1)

File is not sorted by values

2) Create a hash called %chromosomal for which:

key=1% Ensembl ID

value=2"9 positions

Hint. Each line in the file must be split into the 2 columns using the tab
separator (using the split function) and added into the hash.

3) sort %chromosomal by positions (values)

4) print contents of %chromosomal with a foreach

ANSWER

#!/usr/local/bin/perl -w

#hash declaration
$chromosomal;

open (FH, "positions.txt") || die "Could not open file.\n";
#read file contents line per line
while ($1ine=<FH>) {

chomp ($1line) ;
(SensId, Sposition)=split/\t/, $line;

#add key/value pair in %chromosomal
Schromosomal { SensId}=$position;

}

close FH;
#do the sorting
@sorted positions=sort {S$chromosomal{Sa}<=>Schromosomal{$b}} keys\

$chromosomal;

#print %$chromosomal contents

foreach Sposition (@sorted positions) {
print "S$position\tSchromosomal {$position}\n";

}

Introduction to Perl programming
Session V

Antonio Hermoso

CRG Bioinformatics Core

Overview

Transliteration operator tr
Subroutines (Perl functions)

Defining local variables with my

use strict;

Transliteration operator: tr

* Translations are like substitutions, but they happen only on a
letter by letter basis

* Examples:
— Change all vowels to upper case
* Sstring =~ tr/aeiouy/AEIOUY/;

— Change everything to upper case
e Sstring =~ tr/[a-z]/[A-2]/;
— Change everything to lower case
e Sstring =~ tr/[A-Z])/la-z]/;
— Change all vowels to numbers
e Sstring =~ tr/AEIOUY/123456/;
=L,

Transliterator operator tr

* More examples:
— Change bases to their complements:

SDNA = “‘ACGTTTAA’;
SDNA =~ tr/ACGT/TGCA/; #produces TGCAAATT

— Count the number of a particular character in a string:

SDNA = ‘ACGTTTAA’;

Scount A = ($SDNA =~ tr/Aa//);

Scount G = (SDNA =~ tr/Gg//);

print VA $count A - G: $count G\n”;
prints: A: 3-G:1

Subroutines

A user-defined function or subroutine is defined in Perl as follows:

sub subname {
statementl;
statement?’2;
statement3;

Simple example:

sub hello {
print "hello world!\n";

Subroutines cont.

e Subroutine can be anywhere in your program text they are skipped
on execution), but it is most common to put them at the end of the
file

* You can call a subroutine using its name followed by a
parenthesized list of arguments

 Within the subroutine body, you may use any variable from the
main program (variables in Perl are global by default)
#!/usr/local/bin/perl -w
Suser = “guglielmo";
hello () ;
print "goodbye S$Suser!\n";
sub hello {
print "hello S$Suser!\n";

Calling a Subroutines

 You can also use variables from the subroutine back in the
main program (it is the same global variable):

#!/usr/local/bin/perl -w
Sa = 1; Sb = 2;
Ssum = 0;
sum a and b ();
print "sum of Sa plus S$b: $sum\n";
sub sum a and Db{
$sum = $Sa + Sb;
}

prints=>sum of 1 plus 2: 3

Returning Values

* You can return a value from a function, and use it in any
expression:

#!/usr/local/bin/perl -w

Sa = 1;
Sb = 2;
$c = sum a and b() + 1;

print "value of c: $c\n";
sub sum a and b {

return Sa + Sb;
}

prints =>value of c: 4

Returning Values

A subroutine can also return a list of values:

#!/usr/local/bin/perl -w

Sa = 1;

Sb = 2;

Gc = list of a and b();

print "list of c: @c\n";

sub list of a and Dbf{
return (Sa, $b);

prints=>1ist of c: 1 2

Returning Values

 Example: print the maximum of 2 numbers

#!/usr/local/bin/perl -w

sa = 1;
Sb = 2;
Smax = max of a and b();

print "max: Smax\n";
sub max of a and b{
if (Sa > Sb){
return $a;
} else {
return $b;

}

prints =>max: 2

Arguments

* You can also pass arguments to a subroutine

 The arguments are assigned to a list in a special variable @ __
for the duration of the subroutine

#!/usr/local/bin/perl -w
Sa = 1;
Sb = 2;
Smax = max (Sa, $b) ;
print "max: Smax\n";
sub max/{
if (S8 _[0] > S [1]){
return $ [0];
} else {
return $ [1];
}
}

prints => max: 2

Arguments

A more general way to write max() with no limit on the
number of arguments:

#!/usr/local/bin/perl -w
$a = 1;
$b = 2;
Smax = max(Sa, $b,5):;
print "max: Smax\n";
sub max/{
Smax = 0;
foreach $Sn (@) {
if(Sn > Smax)
Smax = Sn;

{

}
}

return Smax;

}

prints => max: 5

Arguments

Don’t confuse S and @
Excess parameters are ignored if you don’t use them

Insufficient parameters simply return unde £ if you look
beyond the end of the @ array

@ islocal to the subroutine.

Local Variables

* You can create local versions of scalar, array and hash

variables with the my() operator.
#!/usr/local/bin/perl -w

Sa = 1; Sb = 2;

smax = 0;

Smaxl = max(a, Sb, 5);
print "maxl: Smaxl\n";

print "max : Smax\n";

sub max{
my (Smax, $n); # local variables
Smax = 0;

foreach $Sn (@) {
if (Sn > Smax) {
Smax = Sn;
}
}
return Smax;

}

prints => maxl: 5
max : O

Local Variables

* You can initialize local variables:

#!/usr/local/bin/perl -w
Sa = 1; Sb = 2;

smax = 0;
Smaxl = max(Sa, $b, 5);
print "maxl: Smaxl\n";
print "max : Smax\n";
sub max {
my ($Smax, $n) = (0,0); # local

foreach $n (@) {
if (Sn > Smax) {
Smax = $Sn;
}
}

return Smax;

}

prints=> maxl: 5
max : O

Local Variables

* You can also load local variables directly from @ :

#!/usr/local/bin/perl -w

sa = 1;
sb = 2;
Smax = max(Sa, Sb);

print "max: Smax\n";
sub max{
my ($nl, $Sn2) = @ ;
if (Snl > $n2) {
return $nl;
} else {
return $n2;

}
}

prints => max: 2

use strict

* You can force all variables to require declaration with my () by starting your
program with: use strict;

#!/usr/local/bin/perl -w
use strict;
my Sa = 1; # declare and initialize $a
my Sb = 2; # declare and initialize $b
my S$max = max($a, Sb); # declare and initialize
print "max: Smax\n";
sub max/{
my (Snl, Sn2) = @ ; # declare locals from @
if(snl > $n2) {
return $nl;
} else/
return $n2;

}
}

prints => max: 2

use strict

use strict effectively makes all variables local

Typing mistakes are easier to catch with use strict,
because you can no longer accidentally reference Sbilll
instead of Sbill

Programs also run a bit faster with use strict

For these reasons, many programmers automatically begin
every Perl program with use strict

It is up to you which style you prefer

Exercise 1

Write a function to concatenate 2 strings

sub concatenate {
my ($stringl, $string2) = @ ;
my S$concatenation = S$stringl.S$Sstring2;
return $concatenation;

example call:
my $dnastring = concatenate (“atctg”,”ATC");

Exercise 2

Write a function to compute reverse complement of a DNA
string

sub revcom {

my ($dna) = Q@ ;
my Srevcom = reverse S$dna;
Srevcom =~ tr/ACGTacgt/TGCAtgca/;

return Srevcom;

example call:

my $revcomDNA = revcom (“atctgATC”);

Exercise 3

e Write a function to count the numbers of nucleotides in a
given DNA sequence

sub countNs {

my ($dna) = @ ;

my SAs = ($dna =~ tr/Aa//);
my $Gs = (Sdna =~ tr/Gg//);
my $Cs = ($dna =~ tr/Cc//);
my $Ts = ($dna =~ tr/Tt//);
return ($As,$Gs,$Cs, $Ts);

}

example call:
my (SAs, $Gs, $Cs, $Ts) = countNs (“atctgATC”) ;

Exercise 4

* Create a file “functions.pm” and copy/paste the 3 functions you have just written in it.

* Note: When one creates a Perl module, it has to return a true value. For this you have
to add:

1;

at the end of the file
 download exons from BRCA2-001 (ENSG00000139618) from:
http://nin.crg.es/perlCourse2012/BRCA2-001.fasta

Exercise 4

* Write a script to:
— Use require “functions.pm”; to include functions
— Open/read the file containing exon sequences
— Join all exons together into Sseq
— Calculcate/print revcom of Sseq

— Calculate/count the numbers of Ns in Sseq:
e SAs,STs,SGs,SCs

Exercise 4

#!/opt/local/bin/perl -w
use strict;
require ("functions.pm");

open file containing exon sequences
open (FH, "ENST00000380152 exons.fa");

join all exons together
my $seq;
while (my $line = <FH>) {

if ($line =~ /">/) |

next;

}

chomp (S$line);

$seq = concatenate ($seq,$line);
}
close (FH);
print "Sequence is:\nS$seg\n\n";

calculate revcom
my Srevcom seq = revcom (S$seq);

print "REVCOM sequence is:\nSrevcom seqg\n\n";

count the numbers of nucleotides
my (S$SAs,$Gs,SCs,STs) = countNs ($seq);

print "As: $As\tGs: $Gs\tCs:

SCs\tTs:

$STs\n";

Thanks all for your patience!

Congratulations!!!

We hope to see you
soon with many
impossible questions
on Perl
programming!!!

REFERENCE CHART

Basic Unix: commands

Path
pwd & get current path

Is & list folder content
Is -| < list folder content in long format

cd <« change to home folder
cd ../../relative/path/

cd /absolute/path/

Folders

mkdir <dir_name> & make
rmdir <dir_name> & delete
rm -rf <dir_name> & delete
cp -rf <dir1> <dir2> & copy

mv -rf <dirl> <dir2> & move

Files

touch <file_name> & change timestamp

less <file_name> & show file content
cp <file1> <file2> & copy filel to file2
mv <file_name> <new_file> & move file
rm <file_name> <new_file> & delete file

cat <file1> <file2><& concatenate files

Other

<command>-h & command help

man <command><¢ manual pages

ps alh & list process in human readable
format

kill & stop program by process ID
zip <file_name> & compress file

unzip <file_name> & uncompress file

Basic Unix: Redirection & Piping

Redirection:

e < <& Inputfrom afile

perl program.pl < parameter.file

o > <& QOutputinto file, overwrite if exists
cat file 1 file 2 file 3 > sum_file

o >> <& Outputinto file, append if exists
wc -1 file >> number lines

e 2> <& Output errors into file
perl program.pl > file.out 2> output.err
Piping:

o | €& Piping through programs
zcat file 1.zip | less

(allows to see content without de-compressing file)

