RNAseq project

Loading report..

Highlight Samples

Regex mode off

    Rename Samples

    Click here for bulk input.

    Paste two columns of a tab-delimited table here (eg. from Excel).

    First column should be the old name, second column the new name.

    Regex mode off

      Show / Hide Samples

      Regex mode off

        Export Plots

        px
        px
        X

        Download the raw data used to create the plots in this report below:

        Note that additional data was saved in multiqc_data when this report was generated.


        Choose Plots

        If you use plots from MultiQC in a publication or presentation, please cite:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        Save Settings

        You can save the toolbox settings for this report to the browser.


        Load Settings

        Choose a saved report profile from the dropdown box below:

        About MultiQC

        This report was generated using MultiQC, version 1.3.dev0 (2ebab02)

        You can see a YouTube video describing how to use MultiQC reports here: https://youtu.be/qPbIlO_KWN0

        For more information about MultiQC, including other videos and extensive documentation, please visit http://multiqc.info

        You can report bugs, suggest improvements and find the source code for MultiQC on GitHub: https://github.com/ewels/MultiQC

        MultiQC is published in Bioinformatics:

        MultiQC: Summarize analysis results for multiple tools and samples in a single report
        Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller
        Bioinformatics (2016)
        doi: 10.1093/bioinformatics/btw354
        PMID: 27312411

        RNAseq project
        RNAseq quantification (Rattus Novergicus)

        PI
        Marta Llansola
        User
        Marta Llansola
        Date
        2017-10-16
        Contact E-mail
        luca.cozzuto@crg.eu
        Application Type
        RNA-seq
        Sequencing Platform
        HiSeq 2500 High Output V4
        Reference Genome
        Ensembl version 88

        Report generated on 2017-10-30, 15:07 based on data in: /nfs/software/bi/biocore_tools/git/nextflow/RNAseq/work/30/32e1f0e26d8d0a871e6e7f38ee7e1a


        General Statistics

        Showing 2/2 rows and 2/4 columns.
        Sample Name% AlignedM Aligned
        sim
        94.9%
        0.9
        test
        0.0%
        0.0

        Ribosomal contamination

        Ribosomal contamination

        Showing 4/4 rows and 2/2 columns.
        FilerRNA Reads%
        test_read2.fastq.gz
        12205/1000000
        1.2205%
        test_read1.fastq.gz
        12205/1000000
        1.2205%
        sim_read1.fastq.gz
        0/1000000
        0%
        sim_read2.fastq.gz
        0/1000000
        0%

        Tool description

        Tool description This section describes the tools used during the analysis and their reference

        Tool version
        Reference
        FastQC v0.11.5
        Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
        Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013 Jan 1;29(1):15-21. doi: 10.1093/bioinformatics/bts635. Epub 2012 Oct 25. PubMed PMID: 23104886; PubMed Central PMCID: PMC3530905
        QualiMap v.2.2.1
        García-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Götz S, Tarazona S, Dopazo J, Meyer TF, Conesa A. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics. 2012 Oct 15;28(20):2678-9. doi: 10.1093/bioinformatics/bts503. Epub 2012 Aug 22. PubMed PMID: 22914218
        Schmieder R, Lim YW, Edwards R. Identification and removal of ribosomal RNA sequences from metatranscriptomes. Bioinformatics. 2012 Feb 1;28(3):433-5. doi: 10.1093/bioinformatics/btr669. Epub 2011 Dec 6. PubMed PMID: 22155869; PubMed Central PMCID: PMC3268242
        bedtools v2.26.0
        Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010 Mar 15;26(6):841-2. doi: 10.1093/bioinformatics/btq033. Epub 2010 Jan 28. PubMed PMID: 20110278; PubMed Central PMCID: PMC2832824
        samtools 1.4.1
        Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R; 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009 Aug 15;25(16):2078-9. doi: 10.1093/bioinformatics/btp352. Epub 2009 Jun 8. PubMed PMID: 19505943; PubMed Central PMCID: PMC2723002

        QualiMap

        QualiMap is a platform-independent application to facilitate the quality control of alignment sequencing data and its derivatives like feature counts.

        Genomic origin of reads

        Classification of mapped reads as originating in exonic, intronic or intergenic regions. These can be displayed as either the number or percentage of mapped reads.

        There are currently three main approaches to map reads to transcripts in an RNA-seq experiment: mapping reads to a reference genome to identify expressed transcripts that are annotated (and discover those that are unknown), mapping reads to a reference transcriptome, and de novo assembly of transcript sequences (Conesa et al. 2016).

        For RNA-seq QC analysis, QualiMap can be used to assess alignments produced by the first of these approaches. For input, it requires a GTF annotation file along with a reference genome, which can be used to reconstruct the exon structure of known transcripts. This allows mapped reads to be grouped by whether they originate in an exonic region (for QualiMap, this may include 5′ and 3′ UTR regions as well as protein-coding exons), an intron, or an intergenic region (see the Qualimap 2 documentation).

        The inferred genomic origins of RNA-seq reads are presented here as a bar graph showing either the number or percentage of mapped reads in each read dataset that have been assigned to each type of genomic region. This graph can be used to assess the proportion of useful reads in an RNA-seq experiment. That proportion can be reduced by the presence of intron sequences, especially if depletion of ribosomal RNA was used during sample preparation (Sims et al. 2014). It can also be reduced by off-target transcripts, which are detected in greater numbers at the sequencing depths needed to detect poorly-expressed transcripts (Tarazona et al. 2011).

        loading..

        STAR

        STAR is an ultrafast universal RNA-seq aligner.

        Alignment Scores

        loading..

        Gene Counts

        Statistics from results generated using --quantMode GeneCounts. The three tabs show counts for unstranded RNA-seq, counts for the 1st read strand aligned with RNA and counts for the 2nd read strand aligned with RNA.

           
        loading..